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Abstract

To translate natural language questions into
executable database queries, most approaches
rely on a fully annotated training set. Annotat-
ing a large dataset with queries is difficult as it
requires query-language expertise. We reduce
this burden using grounded in databases inter-
mediate question representations. These repre-
sentations are simpler to collect and were orig-
inally crowdsourced within the Break dataset
(Wolfson et al., 2020). Our pipeline consists
of two parts: a neural semantic parser that con-
verts natural language questions into the in-
termediate representations and a non-trainable
transpiler to the SPARQL query language (a
standard language for accessing knowledge
graphs and semantic web). We chose SPARQL
because its queries are structurally closer to
our intermediate representations (compared to
SQL). We observe that the execution accu-
racy of queries constructed by our model on
the challenging Spider dataset is comparable
with the state-of-the-art text-to-SQL methods
trained with annotated SQL queries. Our code
and data are publicly available.1

1 Introduction

The difficulty of collecting and annotating datasets
for the task of translating a natural language ques-
tion to an executable database query is a significant
obstacle to the progress of the technology. The
most popular multi-database text-to-SQL dataset,
Spider (Yu et al., 2018), has 10K questions, which
is smaller compared to question answering datasets
of other types: the DROP dataset with text para-
graphs has 97K questions (Dua et al., 2019) and the
GQA dataset with images has 22M questions (Hud-
son and Manning, 2019). The Spider dataset was
created by 11 Yale students proficient in SQL, and
it is difficult to scale such a process up.

1https://github.com/yandex-research/
sparqling-queries

Recently, Wolfson et al. (2020) proposed the
Question Decomposition Meaning Representation,
QDMR, which is a way to decompose a question
into a list of “atomic” steps representing an algo-
rithm for answering the question. Importantly, they
developed a crowdsourcing pipeline to annotate
QDMRs and showed that it can be used at scale:
they collected 83K QDMRs for questions (all in
English) coming from different datasets (including
Spider) and released them in the Break dataset.

QDMRs resemble database queries but are not
connected to any execution engine and cannot be
run directly. Moreover, QDMRs were collected
when looking only at questions and thus have no
information about the database structure. Entities
mentioned in QDMR steps usually have counter-
parts in the corresponding database but do not have
links to them (grounding).

In this paper, we build a system for translating
a natural language question first into QDMR and
then into an executable query. We use modified
QDMRs, where the entities described with text are
replaced with their database groundings. Our sys-
tem consists of two translators: a neural network
for text-to-QDMR and a non-trainable QDMR-to-
SPARQL transpiler. See Figure 1, for an illustra-
tion of our system.

In the text-to-QDMR part, we use an encoder-
decoder model. Our encoder is inspired by RAT-
transformer (Wang et al., 2020) and uses BERT
(Devlin et al., 2019) or GraPPa (Yu et al., 2021).
Our decoder is a syntax-guided network (Yin and
Neubig, 2017) designed for our version of the
QDMR grammar. We trained this model with full
supervision, for which we automatically grounded
QDMRs for a subset of Spider questions.

In the second part of the system, our goal was to
translate grounded QDMRs into one of the existing
query languages to benefit from the efficiency of
database software. The most natural choice would
be to use SQL, but designing such a translator

https://github.com/yandex-research/sparqling-queries
https://github.com/yandex-research/sparqling-queries
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SELECT ?Name

WHERE {

  ?Name arc:teacher:S_ID ?S_ID.
  ?S_ID arc:teacher:S_ID:school:ID ?ID.

  ?ID arc:school:State ?State.

  FILTER(?State = "NY").

} ORDER BY ASC(?Name)

#1 SELECT[teacher]

#2 PROJECT[teacher.Name, #1]

#3 PROJECT[school.State, #1]

#4 COMPARATIVE[#2, #3, = NY]

#5 SORT[#4, #4, asc]

Question: Which teachers work in NY?
Show the names in alphabetical order.
Database:

teacher
Name

school

Lucy Wong

Joseph Huts

Executable SPARQL query

S_ID

1

1

ID StateName
1 NYNYU

2 CAStanford Result of execution:
Lucy Wong
Joseph Huts
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QDMR with grounded arguments:

Figure 1: Overall map of our approach: we feed a question and a database schema into the encoder-decoder model
to obtain the grounded QDMR. The grounded QDMR is then fed into our QDMR-to-SPARQL translator to obtain
an executable SPARQL query. The generated query is executed on the database in the RDF format.

arc:teacher:S_ID

arc:teacher:Name Lucy Wong

arc:teacher:S_ID

Joseph Huts

arc:school:Name

arc:School:ID
1

arc:School:ID
2

NY
NYU

arc:school:State arc:school:State
arc:school:Name

Stanford
CA

arc:teacher:Name

arc:teacher:S_ID:school:ID

1

Figure 2: Database from Figure 1 converted to the RDF
format (the RDF graph). The red nodes correspond to
the values from teacher table, the green ones - to the
values from school table. Arcs correspond to the re-
lations between primary key and other values of the
same row (arc:tbl:col) and along the foreign keys
(arc:t_src:c_src:t_tgt:c_tgt).

was difficult due to structural differences between
QDMR and SQL. Instead, we implement a trans-
lator from QDMR to SPARQL,2 which is a query
language for databases in the Resource Descrip-
tion Framework (RDF) format (Prud’hommeaux
and Seaborne, 2008; Harris and Seaborne, 2013).
SPARQL is a standard made by the World Wide
Web Consortium and is recognized as one of the
key technologies of the semantic web. See Figure 2
for an example of the RDF database.

We evaluated our system with the execution ac-
curacy metric on the Spider dataset (splits by Wolf-
son et al., 2020) and compared it with two strong
baselines: text-to-SQL systems BRIDGE (Lin
et al., 2020) and SmBoP (Rubin and Berant, 2021)
from the top of the Spider leaderboard. On the
cleaned-up validation set, our system outperforms

2SPARQL is a recursive acronym for SPARQL Protocol
and RDF Query Language.

both baselines. On the test set with original an-
notation, our system is in-between the baselines.
Additionally, we experimented with training our
models on extra data: items from Break without
schema but with QDMRs. This teaser experiment
showed potential for further improvements.

This paper is organized as follows. Sections 2
and 3 present two main parts of our system. Sec-
tion 4 contains the experimental setup, Section 5 –
our results. We review related works in Section 6
and conclude in Section 7.

2 QDMR-to-SPARQL translator

2.1 QDMR logical forms

Question Decomposition Meaning Representation
(QDMR) introduced by Wolfson et al. (2020) is an
intermediate format between a question in a natu-
ral language (tested in English) and an executable
query in some formal query language. QDMR is a
sequence of steps, and each step corresponds to a
separate logical unit of the question (see Table 1).
A QDMR step can refer to one of the previous steps,
allowing one to organize the steps into a graph.

We work with QDMR logical forms (LF), which
can be automatically obtained from the text-based
QMDRs, e.g., with the rule-based method of Wolf-
son et al. (2020). Steps of a logical form are derived
from the corresponding steps of QDMR. Each step
of LF includes an operator and its arguments. We
show some operators in Table 2 and provide the
full list in Appendix A.3

3Differently from Wolfson et al. (2020) we merged the op-
eration FILTER into COMPARATIVE due to their similarity
and excluded ARITHMETIC, BOOLEAN and undocumented
COMPARISON because they are extremely rare in the Spider
part of Break.
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Question: For each state, how many teachers are there?

QDMR
(Break)

#1 return states
#2 return teachers in #1
#3 return number of #2 for each #1
#4 return #1 and #3

QDMR
logical form
(Break)

#1 SELECT[states]
#2 PROJECT[teachers in #REF, #1]
#3 GROUP[count, #2, #1]
#4 UNION[#1, #3]

grounded
QDMR
(ours)

#1 SELECT[School.State]
#2 PROJECT[teacher, #1]
#3 GROUP[count, #2, #1]
#4 UNION[#1, #3]

Table 1: Examples of different QDMR formats: textual
QDMR, QDMR logical form (from Break) and our ver-
sion of QDMR with grounded arguments.

2.2 Grounding QDMRs in databases

QDMR logical forms are similar to the pro-
grammed queries but are not connected to any ex-
ecution engine and cannot be executed directly.
To execute these LFs using knowledge from a
database, one needs to associate their arguments
with the entities of the database: tables, columns,
values. We refer to this association as grounding
and provide the details below.

Arguments of LF operators can be of differ-
ent types (see Table 2 and Appendix A) and
some types require groundings. Type ref indi-
cates a reference to one of the existing LF steps.
Type text corresponds to a text argument that
needs to be grounded to a table, column or value
in the database. Type choice corresponds to the
choice among a closed list of possible options, and
type bool corresponds to the True/False choice.

There are also a few edge cases that require spe-
cial processing. First, the value argument of
the COMPARATIVE operator can be either ref
or text. Second, the operator argument of
AGGREGATE/GROUP can actually be grounded to
a column. We introduced this exception because
a database can contain only the aggregated infor-
mation without information about individual in-
stances. As the QDMR annotation is built without
looking at the database it cannot distinguish the two
cases. In the example of Table 1, if the database has
a column num_teachers in the table school
we would need to ground count to the column
num_teachers.

We describe our procedure for annotating LF
arguments with groundings in Section 4.2.

2.3 Executable queries in SPARQL

To convert a QDMR LF with grounded step ar-
guments into an actually executable query, it is
beneficial to translate QDMR into one of the ex-
isting query languages to use an existing efficient
implementation at the test time. In this paper, we
translate QDMR queries into SPARQL, a language
for querying databases in the graph-based RDF for-
mat (Prud’hommeaux and Seaborne, 2008; Harris
and Seaborne, 2013). Next, we briefly overview the
RDF database format and SPARQL and then de-
scribe our algorithm for translating grounded LFs
into SPARQL queries.

RDF format. In RDF, data is stored as a di-
rected multi-graph, where the nodes correspond to
the data elements and the arcs correspond to rela-
tions. RDF-graphs are usually defined by sets of
subject-predicate-object triples, where each triple
defines an arc: the subject is the source node, the
predicate is the type of relation and the object is
the target node.

Relational data to RDF. To evaluate our ap-
proach on the Spider dataset containing relational
databases (in the SQLite format), we convert re-
lational databases to the RDF format. The con-
version is inspired by the specification of Are-
nas et al. (2012). For each table row of the re-
lational database, we add to the RDF graph a set
of triples corresponding to each column. For the
primary key column4 key of a table tbl, we
create a triple with the self-link arc:tbl:key
pointing from the key element to itself. For any
other column col in the table tbl, we create a
triple with the separate edge type arc:tbl:col,
which connects the primary key element of a row
to the corresponding element in col. For each
foreign key of the database, we create an arc type
arc:t_src:c_src:t_tgt:c_tgt (here the
target column c_tgt has to be a key). Then we
add to the RDF graph the triples with these foreign-
key relations. See Figure 2 with an example of the
RDF graph for the database of Figure 1.

SPARQL. In a nutshell, a SPARQL query is
a set of triple patterns where some elements are
replaced with variables. The execution happens by
searching the RDF graph for subgraphs that match
the patterns. For example, a query
SELECT ?State WHERE {

?ID arc:school:State ?State.}

4For simplicity, we assume that each table has a single-
column primary key (otherwise, we add a new ID column).
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Operator Arguments:their types Description

SELECT [subj:text, distinct:bool] Select subj (possibly distinct values)

PROJECT [proj:text, subj:ref] Select proj related to subj (possibly distinct values)

COMPARATIVE
[subj:ref, attr:ref, comp:choice, Select subj such that related attr compares (using =, 6=,
value:text/ref, distinct:bool] >, <, ≥, ≤, like) to value (possibly distinct values)

GROUP [subj:ref, attr:ref, op:choice] Group subj such that attr has same values (aggr. with op)

Table 2: QDMR operators and their arguments with types. See Appendix A for the full version –Table 8.

to the RDF graph of Figure 2 searches for pairs
of nodes that are connected with arcs of type
arc:school:State. Entries starting with sym-
bol ? represent variables. See Figure 1 for an
example of a more complicated query.

SPARQL also supports subqueries and aggre-
gators, the GROUP, SORT, UNION, MINUS key-
words, etc. See, e.g., the Wikidata SPARQL tuto-
rial5 for a detailed overview of SPARQL features.

Translating grounded QDMR to SPARQL.
We implemented a translator from a grounded
QDMR LF into SPARQL. Note that LFs do not
have a formal specification defining the execution,
so our translator fills in the formal meaning. Our
translator recursively constructs graph patterns that
contain a result of LF steps. When processing a
step, the method first constructs one or several pat-
terns for the step arguments and then connects them
into another pattern. At the beginning of the pro-
cess, we request the method to construct the pattern
containing the last QDMR step, which corresponds
to the query output. We provide the details of our
translator in Appendix A.

3 Text-to-QDMR parser

In this section, we describe our approach to gener-
ating a grounded QDMR LF from a given question
and a database schema. Our encoder consists of
BERT-like pretrained embeddings (Devlin et al.,
2019; Yu et al., 2021) and a relation-aware trans-
former (Wang et al., 2020). Our decoder is an
LSTM model that generates an abstract syntax tree
in the depth-first traversal order (Yin and Neubig,
2017).

3.1 Encoder

In our task, the input is a sequence of question
tokens and a set of database entities eligible for
grounding: tables, columns, and extracted values.

5https://www.wikidata.org/wiki/
Wikidata:SPARQL_tutorial

To choose values from a database, we use string
matching between question tokens and database
values (see Appendix B). Additionally, we extract
numbers and dates from the question that can be
valid comparative values not from the database. To
avoid ambiguity of the encoding, we combine the
multiple identical values from different columns
into one.

Following Huang et al. (2018); Zhang et al.
(2019); Wang et al. (2020), the input tokens of
four types (question, table, column and value) are
interleaved with [SEP], combined into a sequence
and encoded: we experiment with BERT (Devlin
et al., 2019) and GraPPa (Yu et al., 2021). The
obtained representations are fed into the relation-
aware transformer, RAT (Wang et al., 2020).

RAT module. RAT (Wang et al., 2020)
is based on relation-aware self-attention layer
(Shaw et al., 2018) . Unlike the standard
self-attention in the transformer model (Vaswani
et al., 2017), this layer explicitly adds embed-
dings rij that encode relations between two in-
puts xi,xj . The RAT self-attention weights are

αij = softmax
(
xiWQ(xjWK+rij)

>
√
d

)
, where WK ,

WQ, d are the standard self-attention parameters.
The relations between the columns and tables

come from the schema structure, e.g., the table –
primary key and foreign key relations. We also
have relations based on matches: question – table
and question – column matches based on the n-
gram comparison (Guo et al., 2019) and question –
value matches from our value extracting procedure.

3.2 Decoder

The decoder is a recurrent model with LSTM cells
that generates an abstract syntax tree (AST) in the
depth-first traversal order (Yin and Neubig, 2017).
At each prediction, the decoder selects one of the
allowed outputs, the list of allowed outputs is de-
fined by our QDMR grammar (see Appendix C).
The output can be the grammar rule (transition to

https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial
https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial
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a new node in AST), the grounding choice or the
previous step number (leaf nodes in AST).

To predict grammar rules, we use the same mod-
ules as in the RAT-SQL model (Wang et al., 2020).
The decoder predicts comparator, aggregator and
sort directions using the output of MLP. For table,
column or value grounding, we use the pointer net-
work attention mechanism (Vinyals et al., 2015).
To predict a reference to a previous QDMR step,
we use an MLP with a mask in the output softmax.
To avoid incorrect QDMR output, we use several
restrictions in the decoding process. Most of them
are in the prediction of comparative arguments, e.g.,
we check type consistency (see Appendix D).

3.3 Training

We follow the RAT-SQL (Wang et al., 2020) train-
ing procedure in the main aspects. We use the
standard teacher forcing approach for autoregres-
sive models. We found that an additional alignment
loss proposed for RAT-SQL did not lead to any im-
provements in our case, so we trained the models
with the cross-entropy loss with label smoothing.
See Appendix B for implementation details.

Augmentations. We randomly permute tables,
columns and values when training. We experi-
mented with a random choice of QDMR graph
linearization at training but did not observe perfor-
mance improvements. We also tried to randomly
select one of the multiple available QDMR ground-
ings, but it did not help as well.

4 Experiment setup

4.1 Data

For training and evaluation, we use the part of
the Break dataset that corresponds to the Spider
dataset.6 Data includes questions and databases
from Spider, QDMR logical forms from Break and
groundings that we collected. Automatic ground-
ing annotation is challenging, but we are able to
annotate with target groundings more than 60% of
the Break data (see Section 4.2). Our splits are
based on the Break splits but take into account the
grounding annotation. The Break dataset does not
include the Spider test, as it is hidden, while the

6The Break dataset also contains QDMRs for other text-
to-SQL datasets, e.g., single-database ATIS and GeoQuery.
Comparison in the regime of fine-tuning on a specific database
is also interesting, but baseline and our codebases failed due to
the limitations of the SQL parsers (coming from Spider). This
issue might be resolved by switching to a different SQL parser
but it appeared technically infeasible at the time of writing.

Dataset Train Dev Test

Original Spider 8695 1034 2147
- with Break 6921 502 521
- with groundings 4350 445 -

Table 3: Dataset statistics for the original Spider, part
of Spider with QDMR annotations from Break and part
of Spider with QDMRs and groundings. Break dev and
test are splits of original Spider dev. Break test is hid-
den, so we do not have annotation for this part.

Break dev and test are the halves of the Spider
dev. The gold QDMR and grounding annotation on
the Break test is also hidden. The overall dataset
statistics are shown in Table 3.

We fixed typos and annotation errors in some
train and dev examples. We also corrected some
databases on train and dev: we deleted trailing
white spaces in values (led to mismatches between
SQL query and database) and added missing for-
eign keys (necessary for our SPARQL generator)
based on the procedure of Lin et al. (2020). We
kept the test questions and SQL queries unchanged
from the original Spider dataset, which implied that
some dataset errors could degrade comparisons of
SQL and SPARQL results.

4.2 Annotating Groundings for LFs

We process LFs from the Break dataset in several
stages. At the first stage, we iterate over all the
operators and make their arguments compatible
with our specification (see Table 2).

At the second stage, we collect candidate ground-
ings for each argument that requires grounding. At
this stage, we use all available sources of informa-
tion: text-based similarity between the text argu-
ment and the names of the database entities, the cor-
responding SQL query from Spider, explicit linking
between the question tokens and the elements of the
schema released by Lei et al. (2020). Importantly,
we can match the output of LF to the output of the
SQL query and propagate groundings inside LF,
which allows to obtain many high-quality ground-
ings. At the third stage, we use collected candidate
groundings and group them in all possible ways to
obtain candidate LFs with all arguments grounded.
Then, for each candidate LF, we run our QDMR-
to-SPARQL translator and execute the obtained
query. We accept the candidate if there are no fail-
ures in the pipeline and the result of the SPARQL
query equals the result of the SQL one. Finally,
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we included the question in the dataset if we had
accepted at least one grounded LF. Note that we
can accept several versions of grounding for each
question. We cannot figure out which one is better
at this point, so we can either pick one randomly or
use all of them at training.

4.3 Evaluation Metric

For evaluation on the Spider dataset, most text-
to-SQL methods use the metric called exact set
matching without values. This metric compares
only some parts of SQL queries, e.g., values in
conditions are not used, and sometimes incomplete
non-executable queries can achieve high metric
values. As our approach does not produce any SQL
query at all, this metric is not applicable.

Instead, we use an execution-based metric, a.k.a.
execution accuracy. This metric compares the re-
sults produced by the execution of queries (allow-
ing arbitrary permutation on the output columns).
Recently, the Spider leaderboard started supporting
this metric, but submitting directly to the leader-
board is still not possible for us because the ex-
posed interface requires SQL queries. We modify
the Spider execution accuracy evaluation in such a
way that it can support any query language that can
be executed and provide results. When comparing
the results of SPARQL to the results of SQL, we
faced several challenges:
• the order of output columns in SQL does not

match the order in the question;
• in Spider, when selecting relations w.r.t. argmin

or argmax there is no consistent policy whether
to pick all the rows satisfying the constraints or
only one of them;

• the order of rows in the output of SQL is stable,
but the order of rows in the output of SPARQL
varies depending on minor launching conditions;

• in SPARQL, sorting is unstable (can arbitrarily
change elements with equal sorting key values),
but SQL sorting is stable;

The first two points can make SQL-to-SQL com-
parisons invalid as well, and the others affect only
SQL-to-SPARQL comparisons.

To resolve these issues, we implemented the
metric supporting SQL-to-SQL, SQL-to-SPARQL,
SPARQL-to-SPARQL comparisons with the fol-
lowing properties:
• we reorder the columns of the outputs based on

the columns the output values come from. If the
matching fails, we try to compare output tables

Model Train Pretrain Dev Test

BRIDGE full BERT 68.3 61.4
SmBoP full GraPPa 74.2 64.1

BRIDGE subset BERT 67.4 60.3
SmBoP subset GraPPa 71.7 64.9

Ours subset BERT 79.3 60.8
Ours subset GraPPa 80.4 62.0

Table 4: Execution accuracy of our model compared
to state-of-the-art text-to-SQL methods on our develop-
ment and test sets.

Train Pretrain Augs Dev Test

subset BERT + 79.3 60.8
full Break BERT - 78.4 61.8
full Break BERT + 78.9 61.8

subset GraPPa + 80.4 62.0
full Break GraPPa - 74.6 62.6
full Break GraPPa + 73.9 61.4

Table 5: Execution accuracy of our model trained on
only the Spider subset of Break compared to using ad-
ditional data from Break (on our development and test
sets).

with the given order of columns;
• if one of the outputs is from an SQL query ending

with “ORDER BY···LIMIT 1”, we check that the
produced one row is contained in another output;

• if one of the outputs has done unstable sorting,
we allow it to provide a key w.r.t. which the sort-
ing was done and try to match the order of the
rows in another output by swapping the rows
with identical sorting-key values;

• before comparison, we extract the column types
from both outputs and convert each value to the
standardized representation.

5 Results

5.1 Comparison with text-to-SQL methods

First, we compare our approach to state-of-the-art
text-to-SQL methods (that generate full executable
queries) BRIDGE (Lin et al., 2020) and SmBoP
(Rubin and Berant, 2021), both from the top of the
Spider leaderboard. See Table 4 for the results. As
our training data includes only 50% of the original
Spider train, we add to the comparison BRIDGE
and SmBoP models trained on the same data subset.
We use the official implementations of both models.
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All models are trained together with finetuning pre-
trained contextualized representations: BRIDGE
encoder uses BERT, SmBoP encoder uses GraPPa,
our model has both BERT and GraPPa versions.

We choose the final model of each training run
of our system based on the best dev result from the
last 10 checkpoints with the step of 1000 iterations.
For BRIDGE and SmBoP, we used the procedures
provided in the official implementations (they simi-
larly look at the same dev set). The estimated std
of our model is 0.9 on the dev set (estimated via
retraining our BERT-based model with 5 different
random seeds).

On the development set, our models achieve bet-
ter execution accuracy than text-to-SQL parsers
even trained on full Spider data. On the test set,
our models outperform BRIDGE but not SmBoP
when trained on the same amount. See Table 6 for
qualitative results of our GraPPa-based model.

We did not include the results of RAT-SQL
(Wang et al., 2020) in Table 4, because this model
was trained to optimize exact set matching without
values, so the model output contains placeholders
instead of values. The model trained on full Spi-
der reproduces the exact matching scores shown
by Wang et al. (2020) but gives only 40.2% execu-
tion accuracy on dev and 39.9% on test. Correct
predictions mostly came from correct SQL queries
without values. We also tried the available feature
of value prediction in the official implementation of
RAT-SQL and obtained better execution accuracy
scores (48.5% on dev and 46.4% on test), but they
were still very low.

5.2 Additional training data from Break
The Break dataset contains QDMR annotations for
several question answering datasets, so we tried to
enrich training on Spider with QDMRs from other
parts of Break. Table 5 shows the execution accu-
racy on our dev and test in these settings. Adding
training data for both versions of the model leads
to performance improvement on the test set, but
slightly decreases the dev set results.

When training with the data from other parts of
Break, we simply assume that the schema is empty
and use all the textual QDMR arguments as values.
More careful exploration of additional QDMR data
is left for future work.

5.3 Ablation study
Table 7 presents results of ablations on the develop-
ment set. First, note that disabling augmentations

Q: How many concerts are there in year 2014 or 2015?

SQL: SELECT count(*) FROM concert
WHERE YEAR = 2014 OR YEAR = 2015

Ours
3

#1 SELECT[concert]
#2 PROJECT[concert.Year, #1]
#3 COMPARATIVE[#1,#2,=2014]
#4 COMPARATIVE[#1,#2,=2015]
#5 UNION[#3, #4]
#6 AGGREGATE[count, #5]

Q: Show location and name for all stadiums with a
capacity between 5000 and 10000.

SQL:
SELECT location, name FROM stadium
WHERE capacity
BETWEEN 5000 AND 10000

Ours
3

#1 SELECT[stadium]
#2 PROJECT[stadium.Capacity, #1]
#3 COMPARATIVE[#1,#2, ≥5000]
#4 COMPARATIVE[#1,#2, ≤10000]
#5 INTERSECTION[#1, #3, #4]
#6 PROJECT[stadium.Location, #5]
#7 PROJECT[stadium.Name, #5]
#8 UNION[#6, #7]

Q: What is the year that had the most concerts?

SQL:
SELECT year FROM concert
GROUP BY year
ORDER BY count(*) DESC LIMIT 1

Ours
3

#1 SELECT[concert.Year]
#2 PROJECT[concert, #1]
#3 GROUP[count, #2, #1]
#4 SUPERLATIVE[max, #1, #3]

Q: What are the names of the stadiums without any
concerts?

SQL:
SELECT name FROM stadium
WHERE stadium_id NOT IN
(SELECT stadium_id FROM concert)

Ours
3

#1 SELECT[stadium]
#2 COMPARATIVE[#1, #1, concert]
#3 DISCARD[#1, #2]
#4 PROJECT[stadium.Name, #3]

Q: What are the number of concerts that occurred in the
stadium with the largest capacity?

SQL:
SELECT count(*) FROM concert
WHERE stadium_id =(
SELECT stadium_id FROM stadium
ORDER BY capacity DESC LIMIT 1)

Ours
3

#1 SELECT[stadium]
#2 PROJECT[stadium.Capacity, #1]
#3 SUPERLATIVE[max, #1, #2]
#4 PROJECT[concert, #3]
#5 AGGREGATE[count, #4]

Q: What is the average and maximum capacities for all
stadiums?

SQL: SELECT avg(capacity),
max(capacity) FROM stadium

Ours
7

#1 SELECT[stadium]
#2 PROJECT[stadium.Average, #1]
#3 AGGREGATE[avg, #2]
#4 AGGREGATE[max, #2]
#5 UNION[#3, #4]

Table 6: Qualitative results of our GraPPa-based model.
3and 7 denote correct and incorrect execution results
respectively.
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Model Pretrain Dev

Base BERT 79.3
- w/o augmentations BERT 75.7
- w/o schema relations BERT 68.1
- with default relations BERT 65.4
- w/o relation-aware layers BERT 51.0

Base GraPPa 80.4
- w/o augmentations GraPPa 75.7

Table 7: Execution accuracy for our ablation study.

in both models decreases the execution accuracy.
Next, we tested different configurations of RAT-

encoder:
• without relations that come from the schema

structure (e.g., the table – primary key and for-
eign key relations);

• with the small number of default relations: with-
out distinguishing table, column or value, be-
cause these elements are considered as elements
of one unified grounding type;

• the regular transformer instead of RAT.
The model without schema relations lost 11% on

dev, which shows that encoding schema with RAT-
encoder is an important part of the model. This also
limits the use of additional data from Break, where
schemas do not exist. The variety of relations in
RAT-encoder is also important, as RAT itself. Our
findings are consistent with the ablations of Wang
et al. (2020).

6 Related Work

Text-to-SQL. The community has recently made
significant progress and moved from fixed-schema
datasets like ATIS or GeoQuery (Popescu et al.,
2003; Iyer et al., 2017) to the WikiSQL or
Overnight datasets with multiple single-table
schemas (Wang et al., 2015; Zhong et al., 2017) and
then to the Spider dataset with multiple multi-table
multi-domain schemas (Yu et al., 2018). Since the
release of Spider, the accuracy has moved up from
around 10% to 70%.

Most recent systems are structured as encoder-
decoder networks. Encoders typically consist of
a module fine-tuned from a pretrained language
model like BERT (Devlin et al., 2019) and a mod-
ule for incorporating the schema structure. Guo
et al. (2019); Zhong et al. (2020); Lin et al. (2020)
represented schemas as token sequences, Bogin
et al. (2019a,b) used graph neural networks and

Wang et al. (2020) used relation-aware transformer,
RAT, to encode a graph constructed from an input
schema. In this paper, we use the RAT module to
encode the schema but enlarge the encoded graph
by adding value candidates as nodes.

Decoders are typically based on a grammar rep-
resenting a subset of SQL and produce output to-
kens in the depth-first traversal order of an abstract
syntax tree, AST, following Yin and Neubig (2017).
A popular choice for such a grammar is to use
SemQL of Guo et al. (2019) or to use a lighter
grammar with more intensive consistency checks
inside beam search like in BRIDGE (Lin et al.,
2020). Recently, Rubin and Berant (2021) pro-
posed a different approach to decoding based on
bottom-up generating of sub-trees on top of the
relational algebra of SQL. In our paper, we follow
the standard AST-based approach but for the gram-
mar describing grounded QDMRs. We also use
some consistency checks and the decoding time to
prevent some easily avoidable inconsistencies.

There is also a line of work on weakly-
supervised learning of text-to-SQL semantic
parsers, where SQL queries or logical forms for
the training set are not available at all. Some works
(Min et al., 2019; Wang et al., 2019; Agarwal et al.,
2019; Liang et al., 2018) reported results on the
WikiSQL dataset, Wang et al. (2021) worked on
GeoQuery and Overnight datasets. We are not
aware of any works reporting weakly-supervised
results on the multi-table Spider dataset.

Pretraining on text and tables. One possible
direction inspired by the success of pretraining lan-
guage models on large text corpora is to pretrain
model on data with semantically connected text
and tables. Yin et al. (2020, TaBERT) and Herzig
et al. (2020, TaPas) used text-table pairs extracted
from sources like Wikipedia for pretraining. Yu
et al. (2021, GraPPa) used synthetic question-SQL
pairs. Deng et al. (2021, STRUG) used the table-to-
text dataset of Parikh et al. (2020, ToTTo). Shi et al.
(2021, GAP) used synthetic data generated by the
models for SQL-to-text and table-to-text auxiliary
tasks. In this paper, we do not pretrain such models
but experiment with GraPPa as the input encoder.

QDMR. Together with the Break dataset, Wolf-
son et al. (2020) created a task of predicting
QDMRs given questions in English. As a base-
line, they created a seq2seq model enhanced with
a copy mechanism of Gu et al. (2016). Recently,
Hasson and Berant (2021) built a QDMR parser
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that is based on dependency graphs and uses RAT
modules. Differently from this line of work, we
use a modified version of QDMRs, and our models
never actually predict QDMR arguments as text but
always directly their groundings.

SPARQL. SPARQL was used in several lines
of work on semantic parsing for querying knowl-
edge bases. The SEMPRE system of Berant et al.
(2013) relied on SPARQL to execute logical forms
on the Freebase knowledge base. Yih et al. (2016)
and Talmor and Berant (2018) created the We-
bQuestions and ComplexWebQuestions datasets,
respecively, where annotations were provided in
the form of SPARQL queries. A series of chal-
lenges on Question Answering over Linked Data
Challenge, QALD (Lopez et al., 2013), and the LC-
QuAD datasets (Trivedi et al., 2017; Dubey et al.,
2019) targeted the generation of SPARQL queries
directly. Our paper is different from these lines of
work as we rely on supervision via QDMRs and
not SPARQL directly.

There also exist several lines of works on con-
verting queries from/to SPARQL, and the problems
are difficult. See, e.g., the works of Michel et al.
(2019); Abatal et al. (2019) and references therein.

7 Conclusion

In this paper, we proposed a way to use the recent
QDMR format (Wolfson et al., 2020) as annota-
tion for generating executable queries to databases
given a question in a natural language. Using
QDMRs is beneficial because they can be col-
lected through crowdsourcing potentially easier
than correct database queries. Our system con-
sists of two main parts. First, we have a learned
text-to-QDMR translator that we built on top of the
recent RAT-SQL system (Wang et al., 2020) and
trained on an annotated with QDMRs part of the
Spider dataset. Second, we have a non-trainable
QDMR-to-SPARQL translator, which generates
queries executable on databases in the RDF format.
We evaluated our system on the Spider dataset and
showed it to perform on par with the modern text-
to-SQL methods (BRIDGE and SmBoP) trained
with full supervision in the form of SQL queries.
We also showed that additional QDMR annotations
for questions not aligned with any databases could
further improve the performance. The improve-
ment shows great potential for future work.
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Supplementary Material
(Appendix)

SPARQLing Database Queries
from Intermediate Question

Decompositions

A QDMR-to-SPARQL translator

Table 8 contains the full list of QDMR operators
used in our paper.

Algorithm 1 sketches the QDMR-to-SPARQL
translator. It is a recursive procedure that creates
SPARQL queries for all QDMR LF steps. At its
core, it constructs one or several patterns for the
step arguments and then connects them into another
pattern in a way specific to the LF operator of the
current step.

Importantly, the patterns for LF operators can
be of two types: inner (inline) and full. An in-
ner pattern represents the internal part of a query
that needs to be placed inside the curly brack-
ets {...}. A full pattern corresponds to a full
query that can be executed directly (starts with
the SELECT keyword). An inner pattern can be
converted to full by using the SELECT <output
vars> WHERE {<inner>} construction. The
full pattern can be converted to inner by creating
a subquery via {<full>} (here, the output vari-
ables of <full> pattern become available in the
scope where the subquery is created).

Different LF operators require and produce dif-
ferent patterns: inner of full. Next, we specify a
pattern for each LF operator.

The SELECT operator adds the grounded object
to the context: a self link for a table, a link for a
column, a link with a filtering condition for a value.

The PROJECT operator creates a context for
the argument and does the same as SELECT. To
connect instances from different columns, we use
the breadth-first search to find the shortest path in
the undirected graph where all the columns of all
tables represent nodes and edges appear between
the primary key of each table and all other columns
of the same table, and along with the foreign links.

The COMPARATIVE operator first creates an
inner <pattern> for its arguments and then
adds a filtering condition from the l.h.s. values
<filter_var>, the operation <comparator>
and the r.h.s. value <value>:
<pattern>
FILTER(<filter_var><comparator><value>).

Algorithm 1 QDMR-to-SPARQL translator
1: function QDMR2SPARQL( )
2: GETCONTEXT([iout], True, ∅)

3: function GETCONTEXT(indices, inline, C)
4: if C is empty then C ← INITC( )
5: while not too many tries do
6: for i in indices do
7: C ← ADDINDEX(i, inline, C)
8: return C

9: function ADDINDEX(i, inline, C)
10: op← QDMR op at step #i
11: args← get indices of arguments of step #i
12: needs_inl← [op needs inline args]
13: makes_inl← [op makes inline context]
14: C ← GETCONTEXT(args, needs_inl, C)
15: C ← fill the pattern of op
16: if inline 6= makes_inl then
17: C ← convert C to inline/full
18: return C

The AGGREGATE operator computes the aggre-
gator <agg_op> from a set of values. This oper-
ator takes the inner pattern <pattern> as input
(with <var> correspondings to the set of values
to aggregate) and produces the full query with the
output variable <output_var> as the output:

SELECT (<agg_op>(<var>) as <output_var>)
WHERE { <pattern> }

The SUPERLATIVE operator filters the in-
stances such that some related attribute has the
min/max value. The operator first computes the
min/max value with a built-in AGGREGATE oper-
ator then filters (similar to COMPARATIVE) the
patterns based on the computed value:

{SELECT (<agg_op>(<var>) AS <minmax_var>)
WHERE { <pattern_inner> } }

<pattern_outer>
FILTER(<query_outer_var>=<minmax_var>).

The SUPERLATIVE operator requires two in-
ner patterns as input <pattern_inner>,
<pattern_outer> and makes an inner pattern
as the output.

The GROUP operator groups the values <var>
by the equal values of the related attribute
<index_var>:

SELECT (<agg_op>(<var>) AS <output_var>)
WHERE { <pattern> }
GROUP BY <index_var>
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Operator Arguments Type Description

SELECT
subject text Select subject
distinct bool (possibly distinct values)

PROJECT
projection text Select projection
subject ref related to subject
distinct bool (possibly distinct values)

COMPARATIVE

subject ref Select subject such that
attr ref related attr compares
comparator choice (using =, 6=, >, <, ≥, ≤, like)
value text/ref to value
distinct bool (possibly distinct values)

SUPERLATIVE
subject ref Select subject such that
attr ref related attr has
operator choice max/min values

AGGREGATE
subject ref Compute max/min/sum/count
operator choice of subject

GROUP
subject ref Group instances of subject
attr ref such that attr has same values
operator choice (aggregate with max/min/sum/count)

UNION ref1, ref2, etc. ref Get the union of ref1, ref2, etc.

INTERSECT
subject ref Get instances of subject
attr1, attr2 ref related to both attr1 and attr2

DISCARD
subject ref Get instances of subject
minus ref excluding instances of minus

SORT
subject ref Order instances of subject
attr ref such that related attr
direction choice is ordered in asc/desc direction

Table 8: QDMR operators, their arguments, types of the arguments. The full version of Table 2.

The aggregation is done with the operator
<agg_op>. The input pattern <pattern> is in-
ner, and the output is the full pattern with the output
variable <output_var>.

The UNION operator can actually correspond to
several operators: horizontal union, vertical union,
union of aggregators, union after group. By hori-
zontal union, we mean the union of two or more
related variables from the same pattern. These
variables have to correspond to different database
columns. By vertical union, we mean the union of
two or more variables corresponding to the same
column but coming from different patterns. This
case is implemented with the UNION keyword
from SPARQL using the following construction:

{ <pattern1> }
UNION
{ <pattern2> }

The union-after-group case is a special but com-
mon situation when arguments contain the result of
the GROUP operator and the index variable of the
same operator. We implement this case similar to
the pattern of the GROUP operator but with several
variables in the output. The union of aggregators is

another common special case when the arguments
of the UNION contain several aggregators from the
same pattern. We simply output these several ag-
gregators by concatenating them after the SPARQL
SELECT keyword.

The INTERSECT operator effectively consists
in sequentially applying two COMPARATIVE op-
erators that do not have explicit comparisons as
arguments.

The DISCARD operator is based of the pattern
very similar to the vertical union:
{ <pattern1> }
MINUS
{ <pattern2> }

The SORT operator consists in adding the
ORDER BY keyword at the end of the full pattern:
SELECT <output_vars>
WHERE { <pattern> }
ORDER BY ASC/DESC(<index_var>)
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B Implementation details

We implemented our model on the top of the RAT-
SQL code7 built with Pytorch (Paszke et al., 2019).
We use pretrained BERT and GraPPa from the
Transformers library (Wolf et al., 2020). To support
SPARQL queries and RDF databases, we used two
libraries: RDFLib8 and the open-source version of
the Virtuoso system.9 RDFLib was much easier to
install (a python package), but Virtuoso allowed
to run SPARQL queries on pre-loaded databases
much faster.

To choose relevant values from a database, we to-
kenized question and all unique database values us-
ing the Stanford CoreNLP library (Manning et al.,
2014), filtered tokens using NLTK10 English stop-
words, and then picked top-25 values with higher
similarity scores calculated as follows:

• for a numeric value, we gave the maximum
score if it exactly matched with some question
token, otherwise, we gave the minimum score;

• for other tokens, we gave the maximum score
if the value and question stems were the same
(we used the Porter and Snowball stemmers
from NLTK), otherwise, we calculated simi-
larity score based on the longest continuous
matching subsequence (we used Python Se-
quenceMatcher class).

For the neural network architecture and train-
ing, we used the same hyperparameters as RAT-
SQL (Wang et al., 2020): 8 RAT layers, each
with 8 heads and the hidden dimension of 256,
1024 and 512 in self-attention, position-wise feed-
forward network and decoder LSTM, respectively.
We trained the model with the Adam optimizer
(Kingma and Ba, 2014) and polynomial decay
scheduler used by Wang et al. (2020). The batch
size was 24, the overall number of iterations was
81000 for all models.

The training time on 4 NVIDIA V100 GPUs was
approximately 24 hours.

7https://github.com/microsoft/rat-sql
8https://github.com/RDFLib/rdflib
9https://github.com/openlink/

virtuoso-opensource
10https://www.nltk.org/index.html

C QDMR grammar
root −→ step
step −→ select, project, sort,

group, aggregate,
comparative, superlative,
intersection, discard,
union, final

select −→ distinct, grounding, step
project −→ distinct, project_1arg

ref, step
comparative −→ distinct, ref, ref,

comp_3arg, step
superlative −→ superlative_op

ref, ref, step
group −→ agg_type, ref, ref, step
aggregate −→ agg_type, ref, step
intersection −→ ref, ref, step
discard −→ ref, ref, step
union −→ ref, ref, step
sort −→ ref, ref, order, step
project_1arg −→ grounding | none
comp_3arg −→ comp_op_type,

column_type, comp_val
comp_op_type −→ comparative_op | no_op
column_type −→ grounding | no_column
comp_val −→ grounding | ref
comparative_op−→ 6= | > | < | ≥ | ≤ |like
superlative_op−→ min |max
order −→ asc | desc
agg_type −→ aggregate_op | grounding
aggregate_op −→ Count | Sum | Avg |

Min | Max

D Restrictions in the decoding process

The decoding process at the inference stage is se-
quential, and at each step, there is a set of eligible
choices. These sets are always non-empty and are
formed using the following restrictions:

• The eligible choices of grounding as aggregate
type (agg_type −→ grounding) columns;

• The eligible choices of grounding as the col-
umn type in comparative (column_type −→
grounding) are columns with the types from
the set of input value types;

• After the model chooses a column in com-
parative, the eligible choices of grounding as
comparative value (comp_val−→ grounding)
are the values from this column or with the
same type but not from the database;

• After the model chose to skip column
(no_column) in comparative, the eligible
choices of grounding as comparative value
(comp_val −→ grounding) are the values not
from the database.

https://github.com/microsoft/rat-sql
https://github.com/RDFLib/rdflib
https://github.com/openlink/virtuoso-opensource
https://github.com/openlink/virtuoso-opensource
https://www.nltk.org/index.html

