@inproceedings{orbach-etal-2021-yaso,
title = "{YASO}: {A} Targeted Sentiment Analysis Evaluation Dataset for Open-Domain Reviews",
author = "Orbach, Matan and
Toledo-Ronen, Orith and
Spector, Artem and
Aharonov, Ranit and
Katz, Yoav and
Slonim, Noam",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.721/",
doi = "10.18653/v1/2021.emnlp-main.721",
pages = "9154--9173",
abstract = "Current TSA evaluation in a cross-domain setup is restricted to the small set of review domains available in existing datasets. Such an evaluation is limited, and may not reflect true performance on sites like Amazon or Yelp that host diverse reviews from many domains. To address this gap, we present YASO {--} a new TSA evaluation dataset of open-domain user reviews. YASO contains 2,215 English sentences from dozens of review domains, annotated with target terms and their sentiment. Our analysis verifies the reliability of these annotations, and explores the characteristics of the collected data. Benchmark results using five contemporary TSA systems show there is ample room for improvement on this challenging new dataset. YASO is available at \url{https://github.com/IBM/yaso-tsa}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="orbach-etal-2021-yaso">
<titleInfo>
<title>YASO: A Targeted Sentiment Analysis Evaluation Dataset for Open-Domain Reviews</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matan</namePart>
<namePart type="family">Orbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orith</namePart>
<namePart type="family">Toledo-Ronen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Artem</namePart>
<namePart type="family">Spector</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ranit</namePart>
<namePart type="family">Aharonov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Katz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noam</namePart>
<namePart type="family">Slonim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Current TSA evaluation in a cross-domain setup is restricted to the small set of review domains available in existing datasets. Such an evaluation is limited, and may not reflect true performance on sites like Amazon or Yelp that host diverse reviews from many domains. To address this gap, we present YASO – a new TSA evaluation dataset of open-domain user reviews. YASO contains 2,215 English sentences from dozens of review domains, annotated with target terms and their sentiment. Our analysis verifies the reliability of these annotations, and explores the characteristics of the collected data. Benchmark results using five contemporary TSA systems show there is ample room for improvement on this challenging new dataset. YASO is available at https://github.com/IBM/yaso-tsa.</abstract>
<identifier type="citekey">orbach-etal-2021-yaso</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.721</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.721/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>9154</start>
<end>9173</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YASO: A Targeted Sentiment Analysis Evaluation Dataset for Open-Domain Reviews
%A Orbach, Matan
%A Toledo-Ronen, Orith
%A Spector, Artem
%A Aharonov, Ranit
%A Katz, Yoav
%A Slonim, Noam
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F orbach-etal-2021-yaso
%X Current TSA evaluation in a cross-domain setup is restricted to the small set of review domains available in existing datasets. Such an evaluation is limited, and may not reflect true performance on sites like Amazon or Yelp that host diverse reviews from many domains. To address this gap, we present YASO – a new TSA evaluation dataset of open-domain user reviews. YASO contains 2,215 English sentences from dozens of review domains, annotated with target terms and their sentiment. Our analysis verifies the reliability of these annotations, and explores the characteristics of the collected data. Benchmark results using five contemporary TSA systems show there is ample room for improvement on this challenging new dataset. YASO is available at https://github.com/IBM/yaso-tsa.
%R 10.18653/v1/2021.emnlp-main.721
%U https://aclanthology.org/2021.emnlp-main.721/
%U https://doi.org/10.18653/v1/2021.emnlp-main.721
%P 9154-9173
Markdown (Informal)
[YASO: A Targeted Sentiment Analysis Evaluation Dataset for Open-Domain Reviews](https://aclanthology.org/2021.emnlp-main.721/) (Orbach et al., EMNLP 2021)
ACL