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Abstract

A key solution to temporal sentence grounding
(TSG) exists in how to learn effective align-
ment between vision and language features ex-
tracted from an untrimmed video and a sen-
tence description. Existing methods mainly
leverage vanilla soft attention to perform the
alignment in a single-step process. However,
such single-step attention is insufficient in
practice, since complicated relations between
inter- and intra-modality are usually obtained
through multi-step reasoning. In this paper,
we propose an Iterative Alignment Network
(IA-Net) for TSG task, which iteratively in-
teracts inter- and intra-modal features within
multiple steps for more accurate grounding.
Specifically, during the iterative reasoning pro-
cess, we pad multi-modal features with learn-
able parameters to alleviate the nowhere-to-
attend problem of non-matched frame-word
pairs, and enhance the basic co-attention mech-
anism in a parallel manner. To further cali-
brate the misaligned attention caused by each
reasoning step, we also devise a calibration
module following each attention module to re-
fine the alignment knowledge. With such it-
erative alignment scheme, our IA-Net can ro-
bustly capture the fine-grained relations be-
tween vision and language domains step-by-
step for progressively reasoning the temporal
boundaries. Extensive experiments conducted
on three challenging benchmarks demonstrate
that our proposed model performs better than
the state-of-the-arts.

1 Introduction

Temporal localization is an important topic of vi-
sual understanding in computer vision. There are
several related tasks proposed for different scenar-
ios involving language, such as video summariza-
tion (Song et al., 2015; Chu et al., 2015), temporal
action localization (Shou et al., 2016; Zhao et al.,
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Figure 1: Illustration of our motivation. Upper: Previ-
ous methods are mainly based on a single-step interac-
tion with attention, which is insufficient to reason the
complicated multi-modal relations, thus may lead to
the misalignment on semantics. Bottom: we develop
an iterative network with improved attention mecha-
nism and calibration module, which can progressively
align accurate semantic.

2017), and temporal sentence grounding (Gao et al.,
2017; Anne Hendricks et al., 2017). Among them,
temporal sentence grounding is the most challeng-
ing task due to its complexity of multi-modal in-
teractions and complicated context information.
Given an untrimmed video, it aims to determine the
segment boundaries including start and end times-
tamps that contain the interested activity according
to a given sentence description.

Existing methods mainly focus on learning multi-
modal interaction by a single-step attention mech-
anism. Most of approaches (Yuan et al., 2019b;
Chen and Jiang, 2019; Zhang et al., 2019a; Ro-
driguez et al., 2020; Chen et al., 2020; Liu et al.,
2020a,b) utilize a simple co-attention mechanism
to learn the inter-modality relations between word-
frame pairs for aligning the semantic informa-
tion. Besides, some approaches (Chen et al., 2019;
Zhang et al., 2019b; Liu et al., 2021) employ a
single-step self-attention to explore the contextual
information among intra-modality to correlate rele-
vant frames or words.
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Although these methods achieve promising re-
sults, they are severely limited by two issues. 1)
These single-step methods only consider the inter-
or intra-modal relation once, which is insufficient
to learn the complicated multi-modal interaction
that needs multi-step reasoning. Besides, the mis-
alignment between inter-modality or the wrong-
attention across intra-modality caused by such
single-step attention will directly degenerate the
performance on the boundary results. As shown in
Figure 1, the task targets to localize the query “All
four are once again talking in front of the camera”
in the video. It is hard for single-step methods to di-
rectly pay more attention on phrase ”once again”,
easily leading to the misalignment problem and
the wrong grounding result. 2) Nowhere-to-attend
problem is generally happened in TSG task, in
which the background frames do not match any
word in the sentence, and the basic attention may
generate the wrong attention weights in these cases.

In this paper, we develop a novel Iterative Align-
ment Network (IA-Net) for temporal sentence
grounding, which addresses the above problems by
an end-to-end framework within multi-step reason-
ing. Specifically, we introduce an iterative match-
ing scheme to explore both inter- and intra-modal
relations progressively with an improved attention
based inter- and intra-modal interaction module. In
this module, we first pad the multi-modal features
with learnable parameters to tackle the nowhere-to-
attend problem, and enhance the basic co-attention
mechanism into a parallel manner that can pro-
vide multiple attended features for better capturing
the complicated inter- and intra-modal relations.
Then, to refine and calibrate the misaligned atten-
tion happened in early reasoning step, we develop
a calibration module following each attention mod-
ule to refine the alignment knowledge during the
iterative process. By stacking multiple such im-
proved interaction modules, our IA-Net provides
effective attention to iteratively reason the compli-
cated relations between the vision and language
features step-by-step, providing more accurate seg-
ment boundaries.

Our main contributions are three-fold:

• We propose an iterative framework for tempo-
ral sentence grounding to progressively align
the complicated semantics between vision and
language.

• We formulate the proposed iterative matching
method with an improved co-attention mech-

anism to utilize learable paddings to address
nowhere-to-attend problem with deep latent
clues, and a calibration module to refine or
calibrate the alignment knowledge of inter-
and intra-modal relations during the reason-
ing process.

• Extensive experiments are performed to ex-
amine the effectiveness of the proposed IA-
Net on three datasets (ActivityNet Captions,
TACoS, and Charades-STA), in which we
achieve the state-of- the-art performances.

2 Related Work

Temporal sentence grounding. Temporal sen-
tence grounding (TSG) is a new task introduced
recently (Gao et al., 2017; Anne Hendricks et al.,
2017). Formally, given an untrimmed video and a
natural sentence query, the task aims to identify the
start and end timestamps of one specific video seg-
ment, which contains activities of interest semanti-
cally corresponding to the given sentence query. To
interact video and sentence features, some works
align the semantics of video with language by a re-
current neural network (RNN). (Chen et al., 2018)
design a recurrent module to temporally capture
the evolving fine-grained frame-by-word interac-
tions between video and sentence. (Zhang et al.)
propose to apply a bidirectional GRU instead of
normal RNN for alignment. However, these RNNs
can not align the semantics well in this task. As
attention has proved its effectiveness on contex-
tual correlation mining, amount of works tend to
align relevant visual features with the query text
description by an attention module. (Liu et al.,
2018a) design a memory attention mechanism on
query sentence to emphasize the visual features
mentioned in the sentence. (Wang et al., 2020)
use a soft attention on moment features based on
the sentence feature. (Zhang et al., 2020) adopt a
simple multiplication operation for visual and lan-
guage feature fusion. Moreover, the visual-textual
co-attention module is widely utilized to model the
cross-modal interaction (Liu et al., 2018b; Yuan
et al., 2019b; Chen et al., 2019, 2020; Rodriguez
et al., 2020; Jiang et al., 2019; Qu et al., 2020; Nan
et al., 2021), which performs effective and efficient
in most of challenging scenes. There are also some
works (Zhang et al., 2019b; Chen et al., 2019) adopt
self-attention block to correlate frames or words in
each modality for constructing scene meaning.

Although these attention based methods have
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Figure 2: The architecture of our proposed IA-Net. The iterative process is devised for multi-modal interaction.

made great progress in TSG, they are severely lim-
ited by such single-step attention mechanism. Mo-
tivated by this, we introduce an iterative alignment
scheme to explore fine-grained inter- and intra-
modal relations. For complicated correlation cap-
turing, we pad the multi-modal features with lear-
able parameters and enhance the co-attention with
multi heads. For semantic misalignment, we addi-
tionally develop a calibration module to refine the
alignment knowledge. Such iterative process helps
our model align more accurate semantic.
Attention mechanism. Attention has achieved
great success in various tasks, such as image clas-
sification, machine translation, and visual ques-
tion answering. (Vaswani et al., 2017) propose
the Transformer to capture the long-term depen-
dency with multi-headed architecture. Although it
attracts great interests from multi-modal retrieval
community, it only consider sentence-guided at-
tention on video frames or the video-guided atten-
tion on sentence words with complex computation.
Compared to it, co-attention mechanism (Lu et al.,
2016; Xiong et al., 2016) is proposed to jointly rea-
son about frames and words attention with light
weights, which is more suitable for addressing
the real-world temporal sentence grounding task.
In this paper, we consider the nowhere-to-attend
cases in TSG task that frame/word is irrelevant to
the whole sentence/video, and address it by uti-
lizing a learnable paddings during the process of
attention map generation. We also improve the ba-
sic co-attention mechanism into a parallel manner
like Transformer which provides multiple latent
attended features for better correlation mining.

3 The Proposed Method

The TSG task considered in this paper is defined
as follows. Given an untrimmed reference video V
and a sentence query Q, we need to predict the start
and end timestamps (⌧s, ⌧e), where the segment in
V from time point ⌧s to ⌧e corresponds to the same

semantic as Q.
In this section, we introduce our framework IA-

Net as shown in Figure 2. Our model consists of
three main components: video and query encoders,
iterative inter- and intra-modal interaction, and the
segment localizer. Video and sentence are first fed
to the encoders for extracting multi-modal features.
Then we iteratively interact their features for se-
mantic alignment. Specially, in each iterative step,
we utilize a co-attention to align the inter-modal
semantic and an another co-attention to correlate
intra-modal instances in each modality. We im-
prove the basic co-attention mechanism in a par-
allel manner, and devise two calibration modules
following the inter- and intra-attention to refine and
calibrate the knowledge of cross-modal alignment
and self-modal correlation during the iterative in-
teraction process. At last, we utilize a segment
localizer to ground the segment boundaries.

3.1 Video and Query Encoders

Video encoder. For video encoding, we first ex-
tract the clip-wise features by a pre-trained C3D
network (Tran et al., 2015), and then add a posi-
tional encoding (Vaswani et al., 2017) to take posi-
tional knowledge. Considering the sequential char-
acteristic in video, a bi-directional GRU (Chung
et al., 2014) is further utilized to incorporate the
contextual information in time series. The output
of this encoder is V = {vt}Tt=1 2 RT⇥D, which
encodes the context in video.
Query encoder. For query encoding, we first ex-
tract the word embeddings by the Glove word2vec
model (Pennington et al., 2014), and also use the
positional encoding and bi-directional GRU to inte-
grate the sequential information. The final feature
representation of the input sentence is denoted as
Q = {qn}Nn=1 2 RN⇥D.

3.2 Improved Inter-modal Interaction

The improved inter-modal interaction module is
based on co-attention mechanism to capture the im-
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portance between each pair of visual clip and word
features. To tackle nowhere-to-attend problem and
calibrate the misalignment knowledge, we improve
the co-attention in a parallel manner with learnable
paddings and devise a calibration module followed
by it. Details are shown in Figure 3.
Nowhere-to-attend and parallel attention. Pre-
vious co-attention based works in TSG (Yuan et al.,
2019b; Chen et al., 2019, 2020) formally com-
pute the attention maps by directly calculating
the inner product between V ,Q. However, it
often occurs at the creation of an attention map
that there is no particular frame or word that the
model should attend, especially for the background
frames that do not match any word in the sentence.
This will lead to the wrong attention on the mis-
matched frame-word pairs. To deal with such cases,
we add K elements to both sentence words and
video clips to additionally serve for no-attention
instances. In details, we incorporate two learnable
matrices [v↵1 , ...,v↵k ], [q↵1 , ..., q↵k ] 2 RK⇥D

to V ,Q as eV = [v1, ...,vT ,v↵1 , ...,v↵k ] 2
R(T+K)⇥D

, eQ = [q1, ..., qN , q↵1 , ..., q↵k ] 2
R(N+K)⇥D, respectively. Besides, we also en-
hance co-attention into multiple attention heads
to capture complicated relations in different latent
space, and use their average as the attention result.

To generate H number of attention maps, we
first linearly project the D-dimensional features of
eV , eQ into multiple lower D�-dimensional spaces,
where D

� = D/H . We take the h-th attention
map (h 2 H) as example:
eV h = Linear( eV ;⇥V,h), eQh = Linear( eQ;⇥Q,h),

(1)
where Linear(·) denotes a fully-connected layer
with parameter ⇥. Then, we compute the attention
map by inner product with row-wise normalization
as:

Ah

V = Softmax(
eV h( eQh)Tp

D�
) 2 R(T+K)⇥(N+K)

,

(2)

Ah

Q = Softmax(
eQh( eV h)Tp

D�
) 2 R(N+K)⇥(T+K)

.

(3)
We take average fusion of multiple attended fea-
tures, which is equivalent to averaging H number
of attention maps as:

AV =
1

H

HX

h=1

Ah

V , AQ =
1

H

HX

h=1

Ah

Q. (4)

At last, we can get the V,Q-grounded alignment
features MV ,MQ, in which each element captures
related semantics shared by the whole Q,V to each
vt, qn:

MV = (AV
eQ)[1 : T, :] 2 RT⇥D

, (5)

MQ = (AQ
eV )[1 : N, :] 2 RN⇥D

. (6)

Calibration module. After receiving the align-
ment features MV ,MQ and the multi-modal fea-
tures V ,Q, to refine the alignment knowledge for
the next interaction step, we aim to update each
modal features V ,Q by aggregating them with the
corresponding alignment features MV ,MQ with a
gate function dynamically. In details, we first gen-
erate a fusion feature for each modality to enhance
its semantics by:

RV = Tanh(WRV V +URV MV + bRV ), (7)

RQ = Tanh(WRQQ+URQMQ + bRQ), (8)

where W ,U , b are the learnable parameters. To
select the discriminative information and filter out
incorrect one, a gating weight can be formulated as
follows:

ZV = Sigmoid(WZV V +UZV MV +bZV ), (9)

ZQ = Sigmoid(WZQQ+UZQMQ+bZQ). (10)

At last, the calibrated output of the current inter-
modal interaction module can be obtained by:

bV = ZV � V + (1�ZV )�RV , (11)

bQ = ZQ �Q+ (1�ZQ)�RQ, (12)

where � denotes the element-wise multiplication.
The developed gate mechanism has two main

contributions: 1) The information of each modality
can be refined by itself and the enhanced seman-
tic features shared with R. It helps to filter out
trivial information maintained in V ,Q, and cali-
brate the misaligned attention by re-considering its
individual shared semantics. 2) The contextual in-
formation from alignment features MV ,MQ sum-
marize the contexts regard to each instances in
cross-modal features Q,V , respectively. After the
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Figure 3: Illustration of our inter-modal interaction.

gating process, the contextual information main-
tained in bV , bQ will also assist to determine the
shared semantics in latter attention procedure. It
will progressively enhance the interaction among
inter-modal features and thus benefit the represen-
tation learning.

3.3 Improved Intra-modal Interaction

The output visual clip and sentence word features
of the inter-modal interaction module have en-
coded cross-modal relations between clips and
words. With such contextual cross-modal informa-
tion, we implement intra-attention on each modal-
ity to correlate the relevant instances for composing
the scene meaning. Different from inter-attention,
there is no nowhere-to-attend problem as video or
sentence has strong temporal relations in itself. A
calibration module is also utilized for self-relation
refinement as shown in Figure 4.

3.4 Iterative Alignment with The Improved

Inter- and Intra-modal Interaction Block

In this section, we introduce how to integrate the
improved inter- and intra-modal interaction mod-
ules to enable the iterative alignment for temporal
sentence grounding. The inter-modal interaction
helps aggregate features from the other modality
to update the clip and word features according to
the cross-modal relations. The clip and word fea-
tures would be updated again with the information
within the same modality via the intra-modal inter-
action. We use one inter-modal interaction module
followed by one intra-modal interaction module to
form a basic improved interaction block (IIB) in
our proposed IA-Net framework as:

bVl,
bQl = IIB( bVl�1,

bQl�1), (13)

where l is the block number. Multiple blocks could
be further stacked thanks to the calibration module
for alignment refinement, helping to reason for the
accurate segment boundaries.
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Figure 4: Illustration of our intra-modal interaction.

3.5 Segment Localizer and Loss Function

After multiple interaction blocks, we utilize a co-
sine similarity function (Mithun et al., 2019) on
bV , bQ to generate a new video-aware sentence rep-
resentation bQ0 which has the same T -dimensional
features like bV . We fuse two modal features as
ft = [bvt, bq0t],F = {ft}Tt=1 2 RT⇥2D by con-
catenation. To predict the target video segment,
similar to (Yuan et al., 2019a), we pre-define multi-
size candidate moments {(⌧̂s, ⌧̂e)} on each frame
t, and adopt multiple full connection (FC) lay-
ers to process features ft to produce the confi-
dence scores {cs} of all windows and predict cor-
responding temporal offsets {(�̂s, �̂e)}. The final
predicted moments of time t can be presented as
{(⌧̂s + �̂s, ⌧̂e + �̂e)}.
Training. We first compute the Intersection over
Union score o between each candidate moment
(⌧̂s, ⌧̂e) with ground truth (⌧s, ⌧e). If the o is larger
than a threshold value �, this moment is viewed
as positive sample, reverse as the negative sam-
ple. Thus we can obtain Npos positive samples and
Nneg negative samples in total (Ntotal). We adopt
an alignment loss to align the predicted confidence
scores and IoU:

Lalign = � 1

Ntotal

X
olog(cs)+(1�o)log(1�cs).

(14)
We also devise a boundary loss for Npos positive
samples to promote exploring the precise start and
end points as:

Lb =
1

Npos

X
S(�̂s � �s) + S(�̂e � �e), (15)

where S represents the smooth L1 function. We
adopt ↵ to control the balance of the alignment loss
and boundary loss:

L = Lalign + ↵Lb. (16)

Testing. We rank all candidate moments according
to their predicted confidence scores, and then “Top-
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Method
ActivityNet Captions TACoS

R@1, R@1, R@1, R@5, R@5, R@5, R@1, R@1, R@1, R@5, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

TGN 45.51 28.47 - 57.32 43.33 - 41.87 21.77 18.90 53.40 39.06 31.02
CTRL 47.43 29.01 10.34 75.32 59.17 37.54 24.32 18.32 13.30 48.73 36.69 25.42
ACRN 49.70 31.67 11.25 76.50 60.34 38.57 24.22 19.52 14.62 47.42 34.97 24.88
CBP 54.30 35.76 17.80 77.63 65.89 46.20 - 27.31 24.79 - 43.64 37.40

SCDM 54.80 36.75 19.86 77.29 64.99 41.53 - 26.11 21.17 - 40.16 32.18
ABLR 55.67 36.79 - - - - 34.70 19.50 9.40 - - -
GDP 56.17 39.27 - - - - 39.68 24.14 13.50 - - -

CMIN 63.61 43.40 23.88 80.54 67.95 50.73 32.48 24.64 18.05 62.13 38.46 27.02
2DTAN 59.45 44.51 26.54 85.53 77.13 61.96 47.59 37.29 25.32 70.31 57.81 45.04

DRN - 45.45 24.36 - 77.97 50.30 - - 23.17 - - 33.36
IA-Net 67.14 48.57 27.95 87.21 78.99 63.12 47.18 37.91 26.27 71.75 57.62 46.39

Table 1: Performance compared with the state-of-the-art TSG models on ActivityNet Captions and TACoS dataset.

n (Rank@n)” candidates will be selected with non
maximum suppression.

4 Experiments

4.1 Datasets

ActivityNet Captions. ActivityNet Captions (Kr-
ishna et al., 2017) contains 20k untrimmed videos
with 100k descriptions from YouTube. The videos
are 2 minutes on average, and the annotated video
clips have much larger variation, ranging from sev-
eral seconds to over 3 minutes. Following public
split, we use 37,417, 17,505, and 17,031 sentence-
video pairs for training, validation, and testing re-
spectively.
TACoS. TACoS (Regneri et al., 2013) is widely
used on TSG task and contain 127 videos. The
videos from TACoS are collected from cooking sce-
narios, thus lacking the diversity. They are around
7 minutes on average. We use the same split as
(Gao et al., 2017), which includes 10146, 4589,
4083 query-segment pairs for training, validation
and testing.
Charades-STA. Charades-STA is built on the Cha-
rades dataset (Sigurdsson et al., 2016), which fo-
cuses on indoor activities. In total, there are 12408
and 3720 moment-query pairs in the training and
testing sets respectively.

4.2 Experimental Settings

Evaluation Metric. Following previous works
(Gao et al., 2017; Yuan et al., 2019a; Zhang et al.,
2020), we adopt “R@n, IoU=m” as our evaluation
metrics. The “R@n, IoU=m” is defined as the per-
centage of at least one of top-n selected moments
having IoU larger than m.
Implementation Details. We define continuous
16 frames as a clip and each clip overlaps 8 frames

with adjacent clips, and apply C3D (Tran et al.,
2015) to encode the videos on ActivityNet Cap-
tions, TACoS, and I3D (Carreira and Zisserman,
2017) on Charades-STA. We set the length of
video feature sequences to 200 for ActivityNet
Captions and TACoS datasets, 64 for Charades-
STA dataset. As for sentence encoding, we utilize
Glove word2vec (Pennington et al., 2014) to embed
each word to 300 dimension features. The hidden
state dimension of Bi-GRU networks is set to 512.
During segment localization, we adopt convolution
kernel size of [16, 32, 64, 96, 128, 160, 192] for Ac-
tivityNet Captions, [8, 16, 32, 64, 128] for TACoS,
and [16, 24, 32, 40] for Charades-STA. We set the
stride of them as 0.5, 0.125, 0.125, respectively.
We set the high-score threshold � to 0.45, and the
balance hyper-parameter ↵ to 0.001 for ActivityNet
Captions, 0.005 for TACoS and Charades-STA. We
train our model with an Adam optimizer with lean-
ing rate 8⇥ 10�4, 3⇥ 10�4, 4⇥ 10�4 for Activity
Captions, TACoS and Charades-STA, respectively.

4.3 Comparison to State-of-the-Art Methods

Compared methods. We compare our proposed
model with the following baseline methods on the
TSG task: TGN (Chen et al., 2018), CTRL (Gao
et al., 2017), ACRN (Liu et al., 2018a), CBP (Wang
et al., 2020), SCDM (Yuan et al., 2019a), ABLR
(Yuan et al., 2019b), GDP (Chen et al., 2020),
CMIN (Zhang et al., 2019b), 2DTAN (Zhang et al.,
2020), and DRN (Zeng et al.). These methods in-
teract multi-modal features only in a single step
process.
Analysis. As shown in Tables 1 and 2, we com-
pare our IA-Net with all above methods on three
datasets. It shows that IA-Net performs among
the best in various scenarios on all three bench-
mark datasets across different criteria and ranks
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Method
Charades-STA

R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL 23.63 8.89 58.92 29.57
ACRN 20.26 7.64 71.99 27.79
CBP 36.80 18.87 70.94 50.19
GDP 39.47 18.49 - -

2DTAN 39.81 23.25 79.33 51.15
SCDM 54.44 33.43 74.43 58.08
IA-Net 61.29 37.91 89.78 62.04

Table 2: Performance compared with the state-of-the-
art TSG models on Charades-STA dataset.

the first or the second in all cases. On Activi-
tyNet Captions, we outperform DRN by 3.59%
and 12.82% in the strict metrics “R@1, IoU=0.7”
and “R@5, IoU=0.7”. We also brings 1.41% and
1.16% improvements compared to 2DTAN. On
TACoS dataset, the cooking activities take place
in the same kitchen scene with some slightly var-
ied cooking objects, thus it is hard to localize such
fine-grained activities. Compared to the top ranked
method 2DTAN, our model still achieves the best
results on “R@1, IoU=0.5” and “R@5, IoU=0.5”,
which validates that IA-Net is able to localize the
moment boundary more precisely. On Charades-
STA, we outperform the SCDM by 6.85%, 4.48%,
15.35% and 3.96% in all metrics. The main rea-
sons for our proposed model outperforming the
competing models lie in two folds. First, compared
to methods like GDP and CMIN which utilize ba-
sic attention to interact multi-modal features, our
method provides an improved attention mechanism
to address “nowhere-to-attend" problem. We also
devise a distillation module to refine and calibrate
the alignment knowledge. Second, previous works
all adopt a single interaction process with no tol-
erance on the attention mistake. Thanks to the de-
signed distillation module across the whole frame-
work, our IA-Net can stack multiple interaction
blocks to progressively reasoning for the segment
boundaries in an accurate direction.

4.4 Model Efficiency Comparison

To further investigate the efficiency of our IA-Net,
we conduct the comparison on TACoS dataset with
other released methods. All experiments are run on
one NVIDIA TITAN-XP GPU. As shown in Table
3, “Run-Time” denotes the average time to local-
ize one sentence in a given video, “Model Size”
denotes the size of parameters. It can be observed
that our IA-Net achieves the fastest run-time with
the relatively smaller model size. Since CTRL and

Method Run-Time Model Size
CTRL 2.23s 22M

ACRN 4.31s 128M
2DTAN 0.57s 232M
IA-Net 0.11s 68M

Table 3: Efficiency comparison run on TACoS dataset.

ACRN need to sample candidate segments with
various sliding windows, they need a quite time-
consuming matching procedure. 2DTAN adopts
a convolution architecture to generate a large 2D
temporal map, which contains a large number of
parameters across the convolution layers. Com-
pared to them, our IA-Net is lightweight with a few
parameters of the linear layers, leading to relatively
smaller model size, thus is faster than 2DTAN.

4.5 Ablation Study

We perform extensive ablation studies on the Ac-
tivityNet Captions dataset. The results are shown
in Table 4.
Effectiveness of each component. To evaluate
each component in our improved interaction block,
we design four strong baselines: model A only
contains the improved inter-attention module for
multi-modal interaction; model B adds the cali-
bration module after each inter-attention module of
model A; model C adds an improved intra-attention
module to model B; model D is the IA-Net, which
has additional calibration module after each intra-
attention module of model C. For fair comparison,
we stack the same number of interaction blocks in
all four baselines for evaluation. From the table,
we can find that both two calibration modules in
each interaction block of IA-Net can bring signif-
icant improvement (A!B, C!D) by refining the
alignment knowledge. The intra-attention can also
improve the performance (B!C) by capturing the
contextual information among intra-modality.
How to choose the padding size? We investi-
gate the performance on different padding size
K, which is originally introduced to deal with
“nowhere-to-attend” problem. Although K = 1
has the ability to guide the frame or words to attend
nothing, such limited latent space can not meet
complicated relations between different videos and
sentences. As shown in Table 4, we found that the
use of K > 1 improves performance to a certain
extent, and K = 3 yields the best.
How to choose the number of attention maps?

Different number of parallel attention maps will
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Sentence Query: She lands on the ground.

Ground Truth

Prediction

| |6.23s 9.54s

| |6.20s 9.55s

Sentence Query: He begins playing the drums with his hands continuously.

Ground Truth

Prediction

| |
35.42s

116.51s

| |
35.51s

116.39s

Sentence Query: The person takes out a cutting board from the drawer.

Ground Truth

Prediction

| |
8.57s

15.37s

| |8.74s 15.51s

Sentence Query: A person is adding clothes to a washing machine.

Ground Truth

Prediction

| |5.50s 13.20s

| |5.61s 13.18s
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Figure 5: (a) Visualization on the inter- and intra-attention of different interaction blocks. (b) Qualitative results.

Component Details R@1, R@5,
IoU=0.7 IoU=0.7

Full model A 21.76 56.60
B 23.57 58.33
C 25.62 61.24
D 27.95 63.12

Padding size K 0 25.81 59.07
1 27.03 61.61
2 27.69 63.07
3 27.95 63.12

4 27.88 62.94
Number (H) of 1 25.89 61.13
attention maps 2 27.14 62.39

4 27.95 63.12

8 27.66 63.05
Number (l) of 1 25.17 59.76
stacked blocks 2 26.88 61.63

3 27.95 63.12

4 27.97 63.03

Table 4: Ablation study on ActivityNet Captions.

guide the model attend to different relationships
in several latent spaces. Following (Vaswani et al.,
2017), we implement 1, 2, 4, 8 number of atten-
tion maps for experiments. We find that H = 4
achieves the best performance.
Choice of the number of stacked interaction

blocks. Our improved interaction block con-
tains calibration module for refining the alignment
knowledge. The results in table indicates that the
model with more than 3 blocks will not bring more
improvement.

4.6 Qualitative Results

We visualize the fused attention maps in Figure
5 (a). For frame-to-word attention, it can be ob-

served that the first interaction block fail to focus
on the word “first". With the help of the calibration
module, the attention is progressively calibrated
on the word “first" in the following blocks. Be-
sides, the third frame pays more attention on the
padding elements as it does not match any words
in the query, which indicates that our IA-Net ad-
dresses the “nowhere-to-attend" problem well. For
frame-to-frame attention, our model correlates the
relevant frames more precisely in deeper blocks.
The qualitative results are shown in Figure 5 (b).

5 Conclusion

In this paper, we have studied the problem of tem-
poral sentence grounding, and proposed a novel
Iterative Alignment Network (IA-Net) in an end-
to-end fashion. The core of our network is the
multi-step reasoning process with the improved
inter- and intra-modal interaction module which
is designed in two aspects: 1) we pad the multi-
modal features with learnable parameters for cap-
turing more complicated correlation in deep latent
space; 2) we develop a calibration module to re-
fine and calibrate the alignments knowledge from
early steps. By stacking multiple such interaction
modules, our IA-Net can progressively capture the
fine-grained interactions between two modalities,
providing more accurate video segment boundaries.
Extensive experiments on three challenging bench-
marks demonstrate the effectiveness and efficiency
of the proposed IA-Net.
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