











Figure 3: Illustration of gradual pruning method for speaker adaptation. After network parameters are initialized
(a), we train and prune the model at the same time for n epochs (b), and lastly finetune the pruned parameters with
target speaker data (c). Light gray connections in (c) mean corresponding parameters are frozen, while blue ones
indicate parameters are finetuned, which are the parameters pruned at earlier stage (b).

and thus save computation resources. Because
speech or speaker information is learnt through
the encoder of an end-to-end ASR model, we only
prune encoder parameters including embedding
network, self-attention network and feedforward
network in all encoder layers.

Afterwards, we keep the informative sub-
network untouched by freezing the unpruned pa-
rameters Oy p to retain the performance on existing
speakers, as represented by the light gray connec-
tions in Figure 3(c), and only finetune the pruned
free parameters 6p for target speaker adaptation
(blue connections in Figure 3(c)). The training
objective will be:

X o
J (0p) = argamax log P(zp, jyp,; 0ur,0p)
P i=1

J (13)
where 0;7p is frozen and 6p is updated. Since
the informative sub-network is already capable
of performing ASR task very well, we believe
further finetuning the free parameters with tar-
get speaker data is an added value to the speaker-
specific model.

Our method does not change the model architec-
ture, unlike some approaches to attach an additional
adapter module (Ding et al., 2020). Besides, we
only need to finetune a small number of parameters
compared to finetuning the entire model. Fixing
the informative sub-network makes our model re-
tain past knowledge with no catastrophic forgetting
issue. It also prevents the model from easily over-
fitting on low-resource target speaker data to some
extent.

4 Experiments

In this section, we present our experiments us-
ing the proposed speaker-aware persistent memory
model and the gradual pruning method.

4.1 Datasets

We conduct experiments to confirm the effec-
tiveness of the proposed model on the open-
source Librispeech dataset (Panayotov et al.,
2015). LibriSpeech consists of 16kHz read En-
glish speech from audiobooks. We use the given
train/development/test splits of Librispeech dataset.
Test_clean data is clean and Test_other data has
noise in speech. See Appendix A.1 for the statis-
tics of Librispeech dataset used in our experiments.

4.2 Training Setup

We use PyTorch and Espnet (Watanabe et al., 2018)
toolkit for our experiments, and we train the model
for 100 epochs (n = 100 in Figure 3(b)). We use
the best set of hyperparameters tested by Watanabe
et al. (2018) for transformer model without further
tuning, and we pre-process the data following the
Espnet toolkit. The total number of model param-
eters is 31 million. Input features are generated
by 80-dimensional filterbanks with pitch on each
frame, with a window size of 25ms shifted every
10ms. The acoustic features are mean and vari-
ance normalized. We exclude utterances longer
than 3000 frames or 400 characters to keep mem-
ory manageable. For joint decoding of CTC and
attention, the coefficient is 0.3 and 0.7 for CTC and
attention respectively. The convolutional frontend
before transformer encoder is two 2D convolutional
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Model

Test_clean Test_other

End-to-end (E2E) (Liischer et al., 2019)
E2E with augmented data (Bérard et al., 2018)
Local prior matching (Hsu et al., 2020)

LAS (Irie et al., 2019)
Self-training (Kahn et al., 2020)
Baseline

14.7 40.8
15.1 -

14.85 39.95
12.9 355
8.06 30.44
9.2 21.9

Table 1: WER results of speech recognition models on LibriSpeech 100h.

neural network layers with filter size (3,2) and
stride 2, each followed by a ReL.U activation. The
attention dimension d,,,o4e; 18 256, and the feedfor-
ward network hidden state dimension d s is 2048.
In the transformer structure, the number of atten-
tion heads h is 4, with dj, = d, = d,, = 64 for each
head, the number of encoder layers NV, is 12, the
number of decoder layers Ny is 6, the initial value
of learning rate is 5.0, the encoder and decoder
dropout rate is 0.1. The input samples are shuffled
randomly and trained with batch size 12. We use
unigram sub-word algorithm with the vocabulary
size capped to be 5000. For i-vector generation, we
follow SREOS recipe in Kaldi (Povey et al., 2011)
toolkit on the training data. I-vectors extracted
are of dimension 100. They are then transformed
to have the same dimension as speech vectors for
concatenation. Our baseline model is competitive
compared with other model results from Table 1.

4.3 Experimental Results
4.3.1 Adaptation for General Speakers

We first test on the adaptation for general speakers
without knowing target speaker profile. Speaker-
aware persistent memory model introduced in Sec-
tion 3.1 achieves this objective. Here we omit the
hyperparameter tuning part, and directly use the
best hyperparameters tested by Zhao et al. (2020),
including the number of speaker i-vectors in the
speaker space and the number of layers applied
with speaker-aware persistent memory. We ran-
domly sample 64 speaker i-vectors and apply on
all the encoder layers in speech transformer. 64
i-vectors were tested to be a good choice to provide
diverse speaker information (Zhao et al., 2020),
and applying on all encoder layers helps capture
speaker knowledge from both low-level phonetic
features and high-level global information. Table 2
shows that our method brings 2.74-6.52% relative
improvement over the baseline, and surpasses Fan
et al. (2019) who also use speaker i-vectors. Fur-

Model Test_clean Test_other
Baseline 9.2 21.9
You et al. (2019) 8.9 21.6
Fan et al. (2019) 8.9 214
Ours 8.6 21.3

Table 2: State-of-the-art results of different speaker
adaptation algorithms on Librispeech test data.

thermore, here we also compare our model with the
first persistent memory model used in ASR (You
et al., 2019), in which persistent memory vectors
are randomly initialized and meant to capture gen-
eral knowledge. Different from them, our model is
to address the speaker mismatch issue. Our method
achieves the best results.

4.3.2 Adaptation for Target Speaker

If the target speaker profile is known beforehand,
the gradual pruning method discussed in Sec-
tion 3.2 could adapt to the target speaker. Directly
finetuning the entire model takes high computa-
tion resources by updating all model parameters,
and could overfit easily if the amount of target
speaker data is limited. We are interested to see
the performance of the gradual pruning method
especially on low-resource data, as well as how
much it alleviates the catastrophic forgetting prob-
lem. Therefore, we randomly choose a speaker
from the Librispeech Test_other data as the tar-
get speaker, and only select 10 utterances of the
target speaker as training data. The remaining ut-
terances of the target speaker are chosen as the test
data. We do this four times and report the aver-
age performance to see the generalizability of the
proposed approach. The average baseline WER of
four speakers is 20.5, and is slightly smaller than
the average WER of Test_other speakers, which is
21.9, so further improving the target speaker per-
formance is a bit more challenging. The pruning
rate is set as 10% here. We compare the perfor-
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Figure 4: WER results of target speaker (a) and non-
target speakers (b). Finetune: directly finetuning the
entire model as Eq. 12. I-vec: speaker-aware persis-
tent memory method proposed in Section 3.1 by adding
i-vectors. Pruning: gradual pruning proposed in Sec-
tion 3.2. Pruning+I-vec: combining feature adaptation
and model adaptation methods proposed. The dotted
lines are the second order polynomial trendlines.

mance of 1) Finetune: directly finetuning the entire
model as Eq. 12, 2) I-vec: speaker-aware persis-
tent memory method by adding i-vectors, 3) Prun-
ing: gradual pruning, 4) Pruning+I-vec: combining
feature adaptation and model adaptation methods
proposed.

For results on the target speaker in Figure 4(a),
finetuning works better than the baseline. Adding
i-vectors has the highest WER initially and the
performance is worse than simply finetuning the
trained model after 20 epochs. We believe speaker-
aware persistent memory method works better on
general speaker adaptation given that the sampled
i-vectors form the speaker space to capture any
speaker knowledge. It is not designed to adapt to
some specific speakers. Using the gradual pruning
method alone has lower WER than finetuning at
the initial stage, but surprisingly it overfits more
than the finetuning method after 20 epochs. More

detailed analysis is needed and we leave it to future
work. Lastly, we combine the feature adaptation
and model adaptation methods, and it achieves our
best result. It outperforms the baseline with up to
20.58% relative WER reduction, and surpasses the
finetuning method by up to relative 2.54%. We see
that the feature adaptation method and the model
adaptation method we propose complement each
other, as the combined model result surpasses each
individual one.

We want to analyze the performance of the rest
non-target speaker data to see if catastrophic forget-
ting happens. From Figure 4(b), all target speaker
adapted models perform slightly worse than the
baseline, which is expected. Combining feature
adaptation and model adaptation could alleviate
catastrophic forgetting problem effectively. It gen-
erally outperforms finetuning in Figure 4(b).

S Analysis

In this section, we revisit our approach to reveal
more details and explore the effectiveness of the
gradual pruning method in combination with the
speaker-aware persistent memory model.

5.1 Pruning Rate

We first test different pruning rates on encoder. Re-
sults are shown in Figure 5. Less pruning rate keeps
more parameters for the general speaker data, and
has less learning capability to target speaker. It is
more suitable for simple adaptation tasks. Higher
pruning rate generates a more sparse network and
is more flexible for speaker adaptation, except that
it retains less original model parameters, thus for-
gets more on the general speaker data. It can be
seen from Figure 5 that pruning 10% of encoder
parameters achieves the best result.

5.2 Gradual Pruning vs One-time Pruning

We use the gradual pruning method (Zhu and
Gupta, 2018) to prune to target sparsity for ev-
ery 10k training steps. One-time pruning at the
initial/middle/final stage of the overall training is
tested for comparison as well. We train for 100
epochs, and initial/middle/final stage pruning is
done at 0/50/100 epoch respectively. Gradual prun-
ing and one-time pruning will reach the same spar-
sity level after the training. Here we use either
gradual or one-time pruning at different stages dur-
ing training, and show the best results of finetuning
for 15 epochs. Table 3 shows that gradual pruning

9345
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Figure 5: WER results of target speaker with different
pruning rates. The dotted lines are the second order
polynomial trendlines.

Model Target Speaker
Baseline 19.9
One-time pruning at initial stage 16.2
One-time pruning at middle stage 17.6
One-time pruning at final stage 16.0
Gradual pruning 15.9

Table 3: WER results of gradual pruning versus

one-time pruning. We train for 100 epochs, and
initial/middle/final stage pruning is done at 0/50/100
epoch respectively.

works better than one-time pruning, be it initial,
middle or final stage of the training. Compared
with one-time pruning, gradual pruning could learn
and prune at the same time. In particular, gradual
pruning follows the train prune cycle, and is capa-
ble of iteratively learning the unpruned parameters
after less contributing parameters are pruned. For
the one-time pruning, pruning at an earlier stage
has the advantage to let the model learn the un-
pruned parameters based on the pruned ones in the
remaining training of the model, but pruning earlier
has the risk to prune important parameters since the
model is not well learnt yet, vice versa for pruning
late. Hence, gradual pruning works the best.

5.3 Extremely Low-resource Adaptation
Data

Lastly, we would like to see the extremely low-
resource adaptation data scenarios. We reduce the
amount of adaptation data and compare the perfor-

Utterance(s) 1 5 10
Total No. of Words 32 104 174
Total Duration (s) 15.00 40.00 67.17

Table 4: Characteristics of utterances selected as the
extremely low-resource adaptation data.

WER vs Training Epoch with Different Amount of Adaptation Data

0 5 10 15 20 25
Epoch

® Baseline 1 utterance 5 utterances 10 utterances

Figure 6: WER results of target speaker with different
amount of adaptation data. The dotted lines are the sec-
ond order polynomial trendlines.

mance with the baseline, where no adaptation is
performed. The characteristics of the adaptation
data selected are listed in Table 4. From Figure 6,
when the amount of adaptation data is reduced from
10 utterances to 5 utterances, the results are similar
to that of 10 utterances at the initial training stage,
and could outperform the baseline by up to relative
18.59%. With less adaptation data, the model over-
fits much faster, especially in the case of having
only 1 utterance for adaptation. However, even
with only 1 utterance, it could surpass the baseline
by up to relative 6.53% with only 5 epochs of train-
ing. Therefore, even with extremely low-resource
adaptation data such as 1 utterance, our method is
effective with fast adaptation.

6 Conclusion

In this paper, we have proposed a unified speaker
adaptation approach consisting of feature adapta-
tion and model adaptation. Speaker-aware persis-
tent memory model makes use of speaker i-vectors
to adapt at the feature level, and we use the gradual
pruning approach to retrieve a subset of model pa-
rameters for adaptation at the model level. Gradual
pruning is found to be better than one-time prun-
ing because gradual pruning could iteratively learn
based on pruned parameters. It can alleviate catas-
trophic forgetting problem as well by retaining a
subnetwork whose performance matches the orig-
inal network. We find that our proposed method
is effective in both general speaker adaptation and
specific target speaker adaptation. In particular, our
method brings relative 2.74-6.52% WER reduction
on general speaker adaptation, and outperforms the
baseline with up to 20.58% relative WER reduction
on target speaker adaptation. Even with extremely
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low-resource adaptation data, our method could
bring 6.53% relative improvement with only a few
training epochs. In the future, we are interested in
the overfitting issue with low-resource data, as well
as multi-speaker adaptation with our method.
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A Appendix
A.1 Details of Librispeech dataset

We use open-source Librispeech dataset for all our
experiments, which is downloadable from https:
//www.openslr.org/12. Table 5 shows the
statistics of the dataset.

LibriSpeech
Training set
Dev_clean set
Dev_other set
Test_clean set
Test_other set

100h (251 speakers)

5.4h (20 males, 20 females)
5.3h (17 males, 16 females)
5.4h (20 males, 20 females)
5.1h (16 males, 17 females)

Table 5: Statistics of Librispeech dataset used for ex-
periments.

Algorithm Training Adaptation
Baseline 2d13h -
Finetune 2d13h 2min
I-vec 2d12h 2min
Pruning 2d5h 2min
Pruning+I-vec 2d5h 2min

Table 6: Average runtime.

A.2 Average Runtime

In Table 6, we list the average runtime using
one V100 GPU of 1) Baseline, 2) Finetune: di-
rectly finetuning the trained baseline model, 3) I-
vec: speaker-aware persistent memory method by
adding i-vectors, 4) Pruning: gradual pruning, 5)
Pruning+I-vec: combining feature adaptation and
model adaptation methods proposed. During train-
ing, all models are trained with the given 100h Lib-
rispeech training data, while during adaptation, all
models are trained with 10 utterances of adaptation
data, except for the baseline where no adaptation is
performed.

A.3 Evaluation Metrics

We evaluate model performance by word error rate
(WER), which can be computed as following:

S+D+1 S+D+I
N, - S+D+C

WER = (14)
where S is the number of substitutions, D is num-
ber of deletions, [ is the number of insertions,
N, is number of words in the reference (N, =
S+ D + (), C is the number of correct words.

A.4 Computing Infrastructure

We conduct our experiments on NVIDIA V100
GPU and Intel(R) Xeon(R) Platinum 8163 32-core
CPU @ 2.50GHz.
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