@inproceedings{raji-de-melo-2021-guilt,
title = "Guilt by Association: Emotion Intensities in Lexical Representations",
author = "Raji, Shahab and
de Melo, Gerard",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.781",
doi = "10.18653/v1/2021.emnlp-main.781",
pages = "9911--9917",
abstract = "What do linguistic models reveal about the emotions associated with words? In this study, we consider the task of estimating word-level emotion intensity scores for specific emotions, exploring unsupervised, supervised, and finally a self-supervised method of extracting emotional associations from pretrained vectors and models. Overall, we find that linguistic models carry substantial potential for inducing fine-grained emotion intensity scores, showing a far higher correlation with human ground truth ratings than state-of-the-art emotion lexicons based on labeled data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="raji-de-melo-2021-guilt">
<titleInfo>
<title>Guilt by Association: Emotion Intensities in Lexical Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shahab</namePart>
<namePart type="family">Raji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerard</namePart>
<namePart type="family">de Melo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>What do linguistic models reveal about the emotions associated with words? In this study, we consider the task of estimating word-level emotion intensity scores for specific emotions, exploring unsupervised, supervised, and finally a self-supervised method of extracting emotional associations from pretrained vectors and models. Overall, we find that linguistic models carry substantial potential for inducing fine-grained emotion intensity scores, showing a far higher correlation with human ground truth ratings than state-of-the-art emotion lexicons based on labeled data.</abstract>
<identifier type="citekey">raji-de-melo-2021-guilt</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.781</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.781</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>9911</start>
<end>9917</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Guilt by Association: Emotion Intensities in Lexical Representations
%A Raji, Shahab
%A de Melo, Gerard
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F raji-de-melo-2021-guilt
%X What do linguistic models reveal about the emotions associated with words? In this study, we consider the task of estimating word-level emotion intensity scores for specific emotions, exploring unsupervised, supervised, and finally a self-supervised method of extracting emotional associations from pretrained vectors and models. Overall, we find that linguistic models carry substantial potential for inducing fine-grained emotion intensity scores, showing a far higher correlation with human ground truth ratings than state-of-the-art emotion lexicons based on labeled data.
%R 10.18653/v1/2021.emnlp-main.781
%U https://aclanthology.org/2021.emnlp-main.781
%U https://doi.org/10.18653/v1/2021.emnlp-main.781
%P 9911-9917
Markdown (Informal)
[Guilt by Association: Emotion Intensities in Lexical Representations](https://aclanthology.org/2021.emnlp-main.781) (Raji & de Melo, EMNLP 2021)
ACL