@inproceedings{pei-jurgens-2021-measuring,
title = "Measuring Sentence-Level and Aspect-Level (Un)certainty in Science Communications",
author = "Pei, Jiaxin and
Jurgens, David",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.784",
doi = "10.18653/v1/2021.emnlp-main.784",
pages = "9959--10011",
abstract = "Certainty and uncertainty are fundamental to science communication. Hedges have widely been used as proxies for uncertainty. However, certainty is a complex construct, with authors expressing not only the degree but the type and aspects of uncertainty in order to give the reader a certain impression of what is known. Here, we introduce a new study of certainty that models both the level and the aspects of certainty in scientific findings. Using a new dataset of 2167 annotated scientific findings, we demonstrate that hedges alone account for only a partial explanation of certainty. We show that both the overall certainty and individual aspects can be predicted with pre-trained language models, providing a more complete picture of the author{'}s intended communication. Downstream analyses on 431K scientific findings from news and scientific abstracts demonstrate that modeling sentence-level and aspect-level certainty is meaningful for areas like science communication. Both the model and datasets used in this paper are released at \url{https://blablablab.si.umich.edu/projects/certainty/}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pei-jurgens-2021-measuring">
<titleInfo>
<title>Measuring Sentence-Level and Aspect-Level (Un)certainty in Science Communications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiaxin</namePart>
<namePart type="family">Pei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Certainty and uncertainty are fundamental to science communication. Hedges have widely been used as proxies for uncertainty. However, certainty is a complex construct, with authors expressing not only the degree but the type and aspects of uncertainty in order to give the reader a certain impression of what is known. Here, we introduce a new study of certainty that models both the level and the aspects of certainty in scientific findings. Using a new dataset of 2167 annotated scientific findings, we demonstrate that hedges alone account for only a partial explanation of certainty. We show that both the overall certainty and individual aspects can be predicted with pre-trained language models, providing a more complete picture of the author’s intended communication. Downstream analyses on 431K scientific findings from news and scientific abstracts demonstrate that modeling sentence-level and aspect-level certainty is meaningful for areas like science communication. Both the model and datasets used in this paper are released at https://blablablab.si.umich.edu/projects/certainty/.</abstract>
<identifier type="citekey">pei-jurgens-2021-measuring</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.784</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.784</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>9959</start>
<end>10011</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Measuring Sentence-Level and Aspect-Level (Un)certainty in Science Communications
%A Pei, Jiaxin
%A Jurgens, David
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F pei-jurgens-2021-measuring
%X Certainty and uncertainty are fundamental to science communication. Hedges have widely been used as proxies for uncertainty. However, certainty is a complex construct, with authors expressing not only the degree but the type and aspects of uncertainty in order to give the reader a certain impression of what is known. Here, we introduce a new study of certainty that models both the level and the aspects of certainty in scientific findings. Using a new dataset of 2167 annotated scientific findings, we demonstrate that hedges alone account for only a partial explanation of certainty. We show that both the overall certainty and individual aspects can be predicted with pre-trained language models, providing a more complete picture of the author’s intended communication. Downstream analyses on 431K scientific findings from news and scientific abstracts demonstrate that modeling sentence-level and aspect-level certainty is meaningful for areas like science communication. Both the model and datasets used in this paper are released at https://blablablab.si.umich.edu/projects/certainty/.
%R 10.18653/v1/2021.emnlp-main.784
%U https://aclanthology.org/2021.emnlp-main.784
%U https://doi.org/10.18653/v1/2021.emnlp-main.784
%P 9959-10011
Markdown (Informal)
[Measuring Sentence-Level and Aspect-Level (Un)certainty in Science Communications](https://aclanthology.org/2021.emnlp-main.784) (Pei & Jurgens, EMNLP 2021)
ACL