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w/ Lmargin

Figure 2: Visualization of the representations for positive, negative instances in SST2 and OOD ones. The discrep-
ancy between ID and OOD representations is greater on representations obtained with Lmargin.

AUROC " / FAR95 # TREC-10 20NG

MSP 73.7 / 56.5 76.4 / 80.7
Maha 75.5 / 56.1 77.2 / 74.1
L margin + MSP 64.1 / 66.4 74.6 / 82.0
L margin + Maha 76.6 / 61.3 78.5 / 72.7

Table 3: Novel class detection performance.

the best with the Mahalanobis distance, reducing
the average FAR95 of Maha by 77% from 7.3%
to 1.7%. (4) The supervised contrastive loss (Lscl)
does not effectively improve OOD detection in gen-
eral. In many cases, its performance is even worse
than the baseline.

4.4 Novel Class Detection

We further evaluate our framework in a more chal-
lenging setting of novel class detection. Given a
dataset containing multiple classes (≥ 3), We ran-
domly reserve one class as OOD data while treat-
ing others as ID data. We then train the model on
the ID data and require it to identify OOD data
in inference. In this case, the OOD data are sam-
pled from the same task corpus as the ID data, and
thus is much harder to be distinguished. We re-
port the average performance of 5 trials in Tab. 3.
The results are consistent with the main results in
general. The Mahalanobis distance consistently
outperforms consistently outperforms MSP, and
the Lmargin achieves better performance except for
the FAR95 metric on the TREC-10 dataset. How-
ever, the performance gain is notably smaller than
that in the main experiments. Moreover, none of
the compared methods achieve an AUROC score of
over 80%. This experiment shows that compared to
detecting OOD instances from other tasks, detect-
ing OOD instances from similar corpora is much
more challenging and remains room for further in-
vestigation.

Accuracy SST2 IMDB TREC-10 20NG

w/o L cont 96.4 95.3 97.7 93.6
w/ L scl 96.3 95.3 97.4 93.4
w/ L margin 96.3 95.3 97.5 93.9

Table 4: Accuracy of the trained classifier.

AUROC ↑ / FAR95 ↓ L1 Cosine L2

MSP 93.6 / 31.1 94.1 / 30.9 92.2 / 32.0
Energy 93.8 / 27.2 94.7 / 26.9 94.4 / 27.5
Maha 99.3 / 2.8 99.2 / 3.0 99.4 / 1.7
Cosine 98.1 / 10.9 98.8 / 5.3 99.0 / 3.9

Table 5: Average OOD detection performance of differ-
ent distance metrics.

4.5 Analysis

Visualization of Representations. To help under-
stand the increased OOD detection performance of
our method, we visualize the penultimate layer of
the Transformer trained with different contrastive
losses. Specifically, we train the model on SST2
and visualize instances from the SST2 validation
set and OOD datasets using t-SNE (Van der Maaten
and Hinton, 2008), as shown in Fig. 2. We observe
that the representations obtained with Lmargin can
distinctly separate ID and OOD instances, such that
ID and OOD clusters see almost no overlap.

Main Task Performance. As stated in Sec. 3.1,
the increased OOD detection performance should
not interfere with the classification performance on
the main task. We evaluate the trained classifier on
the four ID datasets. The results are shown in Tab. 4.
We observe that the contrastive loss does not no-
ticeably decrease the classification performance,
nor does it increase the performance, which differs
from the observations by Gunel et al. (2021).

Distance Metrics. Besides L2 distance, we further
evaluate the L1 distance and the cosine distance
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AUROC ↑ / FAR95 ↓ Maha Maha + Lmargin

BERTBASE 95.7 / 21.5 98.4 / 8.1
BERTLARGE 97.7 / 13.3 99.1 / 3.9
RoBERTaBASE 98.4 / 9.3 99.6 / 2.0
RoBERTaLARGE 98.5 / 7.3 99.4 / 1.7

Table 6: Average OOD detection performance of other
pretrained Transformers.

with the margin-based contrastive loss Lmargin. Re-
sults are shown in Tab. 5. Due to space limita-
tions, we only report the average OOD perfor-
mance on the four ID datasets. We observe that the
three metrics achieve similar performance, and all
outperform the baseline when using Maha as the
scoring function. Among them, L2 distance gets
slightly better OOD detection performance. More-
over, Lmargin significantly outperforms Lscl when
both use cosine as the distance metric. It shows
that their performance difference arises from the
characteristics of the losses instead of the metric.

OOD Detection by Other Transformers. We
also evaluate the OOD detection ability of other
pretrained Transformers in Tab. 6 and report the
average performance on the four ID datasets. For
BERT (Devlin et al., 2019), we use λ = 0.2. We
observe that: (1) Larger models have better OOD
detection ability. For both BERT and RoBERTa,
the large versions offer better results than the base
versions. (2) Pretraining on diverse data improves
OOD detection. RoBERTa, which uses more pre-
training corpora, outperforms BERT models. (3)
The margin-based contrastive loss consistently im-
proves OOD detection on all encoders.

5 Conclusion

This work presents an unsupervised OOD detec-
tion framework for pretrained Transformers requir-
ing only ID data. We systematically investigate
the combination of contrastive losses and scoring
functions, the two key components in our frame-
work. In particular, we propose a margin-based
contrastive objective for learning compact repre-
sentations, which, in combination with the Maha-
lanobis distance, achieves the best performance:
near-perfect OOD detection on various tasks and
datasets. We further propose novel class detection
as the future challenge for OOD detection.

Ethical Consideration

This work does not present any direct societal con-
sequences. The proposed work seeks to develop
a general contrastive learning framework that han-
dles unsupervised OOD detection in natural lan-
guage classification. We believe this study leads to
intellectual merits that benefit with reliable applica-
tion of NLU models. Since in real-world scenarios,
a model may face heterogeneous inputs with signif-
icant semantic shifts from its training distributions.
And it potentially has broad impacts since the tack-
led issues also widely exist in tasks of other areas.
All experiments are conducted on open datasets.
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AUROC SST2 IMDB TREC-10 20NG
MSP Energy Maha Cosine MSP Energy Maha Cosine MSP Energy Maha Cosine MSP Energy Maha Cosine

SST2 - - - - - - - - 97.1 94.8 97.4 97.9 98.6 99.6 99.4 99.7
IMDB - - - - - - - - 98.9 98.8 99.5 99.5 95.9 97.8 98.9 98.6
TREC-10 91.8 91.5 97.8 97.0 94.9 94.0 100 99.5 - - - - 95.1 97.6 98.9 98.7
20NG 93.6 93.4 94.9 93.2 96.0 95.6 99.8 99.6 98.2 99.0 99.5 99.6 - - - -
MNLI 84.6 83.6 95.1 94.6 93.1 92.4 99.5 99.0 97.0 97.3 98.9 98.8 94.1 96.1 98.1 97.5
RTE 89.2 87.4 98.4 98.1 93.9 93.3 99.8 99.5 98.6 98.8 99.5 99.4 90.3 92.8 96.5 95.2
WMT16 84.0 82.4 96.4 95.9 93.4 92.7 99.7 99.1 97.9 98.2 99.4 99.3 92.7 95.0 97.8 96.8
Multi30K 90.2 88.1 98.8 98.6 96.4 95.6 99.9 99.8 99.1 99.2 99.7 99.6 95.7 97.0 98.7 98.3

Avg 88.9 87.7 96.9 96.2 94.7 93.9 99.8 99.4 98.1 98.0 99.0 99.2 94.6 96.5 98.3 97.8

FAR95 SST2 IMDB TREC-10 20NG
MSP Energy Maha Cosine MSP Energy Maha Cosine MSP Energy Maha Cosine MSP Energy Maha Cosine

SST2 - - - - - - - - 14.5 28.5 12.0 6.4 9.0 2.3 0.3 0.9
IMDB - - - - - - - - 2.9 4.5 0.2 0.3 25.3 10.5 4.4 6.4
TREC-10 61.3 63.1 13.2 19.4 37.4 57.7 0 1.5 - - - - 35.0 14.9 1.3 8.3
20NG 52.1 52.5 39.5 55.9 28.4 32.1 0.2 0.6 7.2 6.6 0.3 1.0 - - - -
MNLI 68.4 68.7 27.0 31.4 51.4 55.4 2.2 4.8 13.6 15.5 3.2 4.2 36.0 20.2 10.1 13.9
RTE 59.7 62.4 8.0 9.0 49.9 54.7 0.7 1.9 5.2 5.5 0.8 1.4 49.0 30.1 17.1 21.9
WMT16 69.4 70.6 17.2 20.2 50.9 57.6 1.2 3.8 8.5 10.2 1.8 2.2 40.5 23.1 11.9 16.4
Multi30K 57.3 61.7 5.5 6.0 25.7 34.3 0 0.2 1.3 1.8 0.3 0.2 18.9 9.2 5.9 7.0

Avg 61.3 63.2 18.3 23.6 40.6 48.6 0.7 2.1 7.6 10.4 2.7 2.3 30.5 15.8 7.3 10.7

Table 7: AUROC and FAR95 (in %) of RoBERTaLARGE model trained w/o Lcont. Results are averaged over 5 runs
with different seeds.

AUROC SST2 IMDB TREC-10 20NG
MSP Energy Maha Cosine MSP Energy Maha Cosine MSP Energy Maha Cosine MSP Energy Maha Cosine

SST2 - - - - - - - - 96.2 96.6 98.4 97.8 96.3 98.1 99.5 99.0
IMDB - - - - - - - - 99.3 99.7 99.6 99.3 94.5 96.9 99.0 98.4
TREC-10 95.1 94.9 99.5 99.0 93.8 93.3 100 100 - - - - 88.0 92.4 99.6 96.5
20NG 95.2 95.0 100 100 95.4 95.3 100 99.9 99.2 99.8 99.8 99.7 - - - -
MNLI 82.8 82.7 99.8 99.5 92.4 91.7 100 99.9 96.6 97.6 99.2 98.8 91.0 94.2 98.4 97.2
RTE 87.4 87.5 100 99.9 92.9 92.1 100 99.9 96.6 98.1 99.6 99.2 84.5 88.7 98.2 95.6
WMT16 83.9 84.0 99.9 99.4 92.9 92.2 100 99.9 97.1 98.0 99.4 99.1 88.3 92.5 98.5 96.7
Multi30K 93.5 93.6 100 99.9 95.9 95.7 100 100 97.9 98.9 99.5 99.3 93.7 96.0 99.1 98.3

Avg 89.7 89.6 99.9 99.6 93.9 93.4 100 99.9 97.6 98.4 99.3 99.0 90.9 94.1 98.9 97.4

FAR95 SST2 IMDB TREC-10 20NG
MSP Energy Maha Cosine MSP Energy Maha Cosine MSP Energy Maha Cosine MSP Energy Maha Cosine

SST2 - - - - - - - - 11.9 10.4 1.6 6.9 13.7 5.3 1.2 2.6
IMDB - - - - - - - - 0.5 0.2 0 0 23.6 11.4 4.7 7.4
TREC-10 35.3 35.0 2.4 4.3 50.0 54.0 0 0 - - - - 27.2 13.8 1.4 4.4
20NG 36.4 36.3 0 0 37.8 33.1 0 0 0.6 0.2 0 0 - - - -
MNLI 64.6 64.3 0.4 2.6 52.2 83.8 0.1 0.9 9.6 6.7 0.7 1.9 37.4 24.7 9.6 16.7
RTE 58.3 57.7 0 0.3 52.9 54.3 0 0.3 9.8 6.2 0.1 0.5 52.9 35.4 11.1 24.2
WMT16 64.3 64.1 0.5 3.0 53.7 55.7 0 0.4 7.9 5.7 0.5 1.3 45.3 27.8 7.5 18.7
Multi30K 36.3 35.4 0 0.3 30.9 31.9 0 0 5.3 2.6 0 0.2 27.8 12.0 6.9 8.7

Avg 49.2 48.8 0.6 1.7 46.3 52.1 0 0.2 6.5 4.6 0.4 1.5 32.6 18.6 6.0 11.8

Table 8: AUROC and FAR95 (in %) of RoBERTaLARGE model trained w/ Lmargin. Results are averaged over 5 runs
with different seeds.

A Full Results

We show the full OOD detection performance of ID datasets on OOD datasets. The results of w/o Lcont
and w/ Lmargin are shown in Tab. 7 and Tab. 8, respectively.


