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Abstract
Recent text generation research has increas-
ingly focused on open-ended domains such as
story and poetry generation. Because mod-
els built for such tasks are difficult to evaluate
automatically, most researchers in the space
justify their modeling choices by collecting
crowdsourced human judgments of text qual-
ity (e.g., Likert scores of coherence or gram-
maticality) from Amazon Mechanical Turk
(AMT). In this paper, we first conduct a sur-
vey of 45 open-ended text generation papers
and find that the vast majority of them fail to
report crucial details about their AMT tasks,
hindering reproducibility. We then run a se-
ries of story evaluation experiments with both
AMT workers and English teachers and dis-
cover that even with strict qualification fil-
ters, AMT workers (unlike teachers) fail to
distinguish between model-generated text and
human-generated references. We show that
AMT worker judgments improve when they
are shown model-generated output alongside
human-generated references, which enables
the workers to better calibrate their ratings.
Finally, interviews with the English teachers
provide deeper insights into the challenges of
the evaluation process, particularly when rat-
ing model-generated text.

1 Introduction

Recent advances in neural language modeling have
spurred research into open-ended text generation
tasks such as story generation (Peng et al., 2018a),
style transfer (Krishna et al., 2020), and pun gen-
eration (He et al., 2019). Since the space of pos-
sible outputs for these tasks is huge compared to
more constrained problems such as machine trans-
lation, automatic metrics such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) that measure
similarity to reference texts are mostly uninforma-
tive (Akoury et al., 2020).1 Human evaluation of

1Nevertheless, such metrics are commonly reported in
research papers on open-ended text generation.

model-generated text, which is critical for open-
ended tasks given the unreliability of automatic
metrics (Peng et al., 2017; Reiter, 2018; See et al.,
2019), is frequently conducted on Amazon’s popu-
lar Mechanical Turk platform (AMT) to minimize
cost and time. Most existing AMT studies ask
crowdworkers to provide Likert scale ratings of
various properties of generated text, such as flu-
ency and likability.

In this paper, we study the reliability and repro-
ducibility of AMT evaluations of open-ended text
generation. We first conduct a survey of papers
on open-ended text generation between 2018-2020
and find many critical details often go unreported
(e.g., worker qualifications, payment, task descrip-
tions, annotator agreement), a finding in line with
prior reproducibility studies outside open-ended
text generation (Card et al., 2020; Howcroft et al.,
2020; van der Lee et al., 2021).

Next, we perform a series of story generation
evaluations with both AMT workers and expert
raters (English teachers), applying a variant of the
most common task configuration that appeared in
our survey (5 point Likert scale ratings of 200
examples with three annotators per example) to
the paragraph-length WritingPrompts dataset
of Fan et al. (2018). Unlike prior work in this area,
we ask raters to evaluate both stories generated by
a fine-tuned GPT-2 language model (Radford et al.,
2019) and human-written reference stories on the
same scale, as we expect the latter to consistently
score higher on all evaluations. Our experiments
expose and quantify several troubling trends:

1. AMT ratings do not reliably distinguish
model-generated text from human-generated
text unless workers are asked to rate both side-
by-side, which allows them to better calibrate
their ratings.

2. Running an identical task (same AMT param-
eters and input data) on different days of the
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Figure 1: Three examples of prompt-story pairs along with ratings from AMT workers and expert teachers that
demonstrate major issues with human evaluation of open-ended text generation.

week exhibits high variance and can lead to
dubious conclusions (e.g., that reference texts
are lower quality than GPT-2 generated text).

3. Many AMT workers do not carefully read the
text that they are evaluating. Even after en-
abling multiple qualifications to exclude low-
quality workers, 42% of workers on average
take fewer than 40 seconds to complete each
task. Filtering out these workers can make a
significant impact to the overall ratings, but
also notably reduces the number of datapoints.

4. Even expert raters struggle to read and judge
model-generated text. The time they spend per
example increases significantly compared to
that for references, and agreement also drops.

For future human evaluations of open-ended text
generation tasks, we urge researchers to obtain ex-
pert raters whenever possible. If AMT is the only
feasible option, we recommend that available ref-
erence outputs also be evaluated alongside model-
generated ones to improve rating calibration, and
also that heavy filtering of the worker population
(possibly through qualification tasks, or post-hoc
removal) is performed prior to reporting results.

2 A survey of papers that evaluate
open-ended text generation with AMT

We begin with a survey of 45 papers that use
AMT to evaluate the output of open-ended English-
language text generation models, which includes

generated stories, metaphors, paraphrases, puns,
sarcasm, and sentences with transferred style or at-
tributes 2. Each paper was published between 2018
and 2020 at ACL, NAACL, or EMNLP, and we ex-
clude papers that use AMT to evaluate more well-
established generation tasks like machine transla-
tion, or summarization.3 Unlike previous surveys
of evaluating generated text (Çelikyilmaz et al.,
2020; van der Lee et al., 2021), we focus specifi-
cally on AMT evaluations of open-ended text gen-
eration. In this section, we provide an overview of
the different types of evaluation task setups present
in our survey; later, we experiment with several
variants of the most common setup.

Evaluation criteria: As in the survey
of Howcroft et al. (2020), we observe a va-
riety of different evaluation criteria and definitions
of these criteria across the 45 papers. The most
common criteria include fluency and/or grammati-
cality (19), overall “quality” (12), and relevance
(10) to a corresponding prompt. Furthermore,
stories in particular tend to also be evaluated on
some notion of coherence (9) and likability (4).

2The details on the survey questions and surveyed papers
are provided in the Appendix A

3For detailed numbers see Table A1; the specific papers in
the survey are in Table A2. Four papers conducted multiple
evaluations with different settings, and as such we count them
in multiple categories. Moreover, all but nine papers evaluated
their systems on more than one attribute.
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Rating scales: More than half of the papers (24)
employ a 5-point Likert scale to evaluate the above
criteria; of these, 19 provided labels for just the end
points of the scale (e.g., “lowest” vs. “highest”),
while 5 labeled all points on the scale. The next
most common evaluation type is ranking two or
more system outputs (23). Less common are other
Likert scales (3, 4, or 6-point), pass/fail tasks, and
output-prompt matching tasks.

Number of raters and rated items: An alarm-
ing number of papers (14) do not even report the
number of raters and/or items (6) used for evalu-
ation. Of the remaining, most papers (16) obtain
ratings from 3 separate AMT workers per item.
The most common number of items per evaluation
is 100 (14). The number of raters per item in other
studies ranges from 2 to 11, while the number of
items ranges from 12 to 1,000.

Workers qualifications and compensation:
The vast majority of papers do not report AMT
worker qualifications (32) or worker compensation
(35), which adds to the reproducibility woes.
Among papers that report qualifications, the most
common were HIT4 approval rate ≥ 90%-99%,
and number of approved HITs between 500 to
5,000. Only 11 papers mentioned restricting
workers to those from English-speaking countries
or applying some kind of language test, despite all
evaluations being done on English text.

Length of the Rated Text: As open-ended text
generation encompasses an array of different tasks,
the length of the rated text differed greatly, ranging
from single sentences (28), sometimes presented
in a longer context, to short paragraphs (7), and
longer paragraphs (14). The latter setting is most
commonly used for story generation tasks.

3 Evaluating story generation with AMT

Our survey reveals that the most popular Mechani-
cal Turk task design for open-ended text generation
asks AMT workers to rate various properties of
generated text on a 5-point Likert scale. In this
section, we conduct a series of AMT evaluations
for the open-ended problem of story generation by
varying different parameters within this standard
task design. Importantly, we evaluate both model-
generated stories as well as human-generated refer-

4In AMT parlance, a human intelligence task (HIT) refers
to a single item; in our case, each HIT corresponds to one
story, which workers rate on four different properties.

ence stories, which provides a pseudo upper bound
for the ratings. Our experiments reveal that worker
qualifications (e.g., HIT approval rate and number
of accepted HITs) do not notably impact judgments
or spam rate on reference stories, with the excep-
tion of country of origin. Furthermore, we uncover
an issue with rating calibration: when both ref-
erence and model-generated stories are included
for the same prompt, average reference scores are
significantly higher than those for model-generated
text; however, when workers only see one type of
text per HIT, they give similar average scores to
both types.

3.1 Experimental Setup
We first describe the parameters of our experiments
before later analyzing the results.

Dataset: We use the WritingPrompts
dataset collected by Fan et al. (2018), which is a
collection of 303,358 English language stories writ-
ten by Reddit users on the r/WritingPrompts
subreddit.5 This dataset, which consists of short
prompts paired with user-written stories (e.g.,
“There are 10 legendary dentists who review every
toothpaste. You are the 10th... being hunted by
the other 9...”), has been used in multiple previous
works on paragraph-length story generation (Fan
et al., 2019; See et al., 2019; Mao et al., 2019). We
randomly select 200 prompts from the test set for
all of our experiments. Since the human-written
stories in the dataset are already tokenized, we
first de-tokenized the stories, cleaned up artifacts
from lemmatization, and manually truncated each
story so that it ends with a full sentence and is no
longer than 150 words in order to make the length
comparable with the machine-generated story.6

We use the resulting stories for all experiments
with reference text.

Model-generated stories: We follow a simi-
lar modeling approach to prior story genera-
tion work (Mao et al., 2019; Guan et al., 2020)
by fine-tuning a pretrained GPT-2 medium-sized
model (Radford et al., 2019) on the training set
of the WritingPrompts dataset, using the Hugging-
Face Transformers library (Wolf et al., 2020). We
use a batch size of approximately 50k tokens, a
learning rate of 5e− 5 with a linear learning rate
schedule, and train for 3 epochs, stopping training

5https://reddit.com/r/WritingPrompts/
6The mean length of the selected reference stories is 134.5

tokens, with a standard deviation of 8.81.

https://www.reddit.com/r/WritingPrompts/comments/j371rg/wp_there_are_10_legendary_dentists_who_review/
https://www.reddit.com/r/WritingPrompts/comments/j371rg/wp_there_are_10_legendary_dentists_who_review/
https://www.reddit.com/r/WritingPrompts/comments/j371rg/wp_there_are_10_legendary_dentists_who_review/
https://reddit.com/r/WritingPrompts/
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after validation perplexity converges to ∼ 19. Each
training example consists of a concatenation of a
prompt, separator token (new line character), and
reference story. At test-time, we feed the same
200 prompts selected above to our model for fair
comparison to the human-written stories, and we
generate three stories per prompt using nucleus
sampling (Holtzman et al., 2019) with p = 0.9. We
manually truncate each sample so that it ends with
a full sentence and is no longer than 150 words.7

These stories are used in all experiments evaluating
machine-generated stories.

AMT task parameters: We conduct all exper-
iments using the default interface in Mechanical
Turk (see Figure A1 and Figure A2). Workers
were asked to rate human-written and/or machine-
generated stories on four attributes, with the fol-
lowing definitions provided to them:

1. Grammar: “How grammatically correct is the
text of the story fragment?”

2. Coherence: “How well do the sentences in the
story fragment fit together?”

3. Likability: “How enjoyable do you find the
story fragment?”

4. Relevance: “How relevant is the story frag-
ment to the prompt?”

Their ratings fall on a 5-point Likert scale with
the corresponding endpoints labelled as “lowest” (1
point) and “highest” (5 points). Since our survey
did not find many previous papers that reported
using detailed descriptions for each point on the
scale, we chose to use minimal labels to mimic the
most popular setup (see Section 2 for details).

Each of our AMT experiments shows workers
the same 200 prompts paired with human and/or
machine-generated stories, and we solicit three
worker judgments per HIT. Workers were paid
$0.20 per HIT for tasks that showed one story, and
$0.35 per HIT for those that showed two stories;
in total, our AMT experiments cost roughly $1.5K.
Importantly, each experiment used a completely dif-
ferent set of workers (i.e., each worker could only
participate in one experiment, although they can
complete multiple HITs within that experiment),
which is an intentional choice to prevent workers
from judging the same story multiple times. Fi-
nally, to eliminate potential variations stemming

7The mean length of the generated stories is 137.4 tokens,
with a standard deviation of 8.36.

from evaluation on different days (weekdays vs.
weekends) and time of day, we launch all experi-
ments on weekdays between 11:00-11:30AM PST.

3.2 AMT Evaluations of Reference Text
Our first set of experiments concerns only human-
written reference stories; we move to machine-
generated text in the next subsection. One of our
assumptions with human-written stories, supported
by the expert teacher assessment in Section 4, is
that they should receive relatively high scores for
all four properties (except perhaps likability which
is highly subjective). We thus use reference texts
to evaluate various AMT parameters such as qual-
ifications or day of task launch, observing how
modifications to these parameters affect the aver-
age scores of reference text.

Impact of worker qualifications: We run four
experiments evaluating the previously-described
set of 200 prompts with reference story fragments,
varying the worker qualifications as follows: (1)
no qualifications, (2) including only workers with
HIT approval rate > 90%, (3) including only work-
ers with approval rate > 90% and at least 1000
approved HITs, (4) including only workers with ap-
proval rate > 90% and at least 1000 approved HITs
who are located in English-speaking countries.8

The results in the top portion of Table 1 suggest
that applying all of the qualifications (i.e., workers
from English-speaking countries, approval rate >
90%, approved HITs ≥ 1000) has a positive effect
on the quality of workers, as this setting yielded the
highest scores out of the four experiments for co-
herence and relevance while ratings for grammar
were also considerably high. Ratings for likabil-
ity were lower than in the experiments with less
strict qualifications, but likability is a very sub-
jective measure which consistently shows a very
low agreement (Krippendorff’s α of -0.04 to 0.11).
When all AMT worker qualifications are enabled,
the worker ratings more closely align to those made
by English teachers, although there are still substan-
tial deviations (Section 4). Additionally, with all
qualifications enabled, workers show higher agree-
ment for grammar, coherence, relevance and even
likability, although the agreement between raters
remains low.

High variance across different days: Con-
cerned by the low overall agreement, we decided

8We include workers from the US, Canada, the UK, Aus-
tralia, and New Zealand.
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Experiment description Grammar Coherence Relevance Likability
MeanSTD IAA% MeanSTD IAA% MeanSTD IAA% MeanSTD IAA%

Impact of Qualifications

No qualifications 4.050.90 0.0814.5 3.920.98 0.024.5 3.661.22 0.1311 3.641.16 0.027

+ > 90% HIT approval 4.160.86 0.0718 4.070.93 0.0610.5 3.671.14 0.079 3.681.15 0.0810

+ at least 1000 HITs 3.910.85 0.0512 3.850.98 0.0811.5 3.601.15 0.188 3.631.13 0.0712.5

+ English-speaking countries 4.000.92 0.2115.5 4.110.96 0.1416.5 3.711.26 0.2710 3.371.18 0.117.5

Variance Across Days

Day 1 (all quals.) 4.000.92 0.2115.5 4.110.96 0.1416.5 3.711.26 0.2710 3.371.18 0.117.5

Day 2 (all quals.) 3.860.92 -0.0310.5 3.920.98 -0.036.5 3.711.08 0.0211 3.730.97 -0.048.5

Day 3 (all quals.) 3.980.96 0.1811 4.050.94 0.1310.5 3.461.29 0.268 3.421.16 0.074.5

Impact of Country of Origin

- English-speaking countries 3.821.04 0.0311 3.451.19 -0.019 3.251.27 0.036.5 3.321.26 -0.093

Impact of Filtering by the Median Work Time

Day 2 (Median ≥ 40s) 4.040.94 4.330.92 3.741.34 3.671.06

Table 1: AMT experiments on human-written reference stories. Inter-annotator agreement (IAA) between the
three raters is measured with Krippendorff’s α as well as the percentage of stories for which all three raters exactly
agreed on a rating (the latter is subscripted). Last section omits IAA due to the large number of missing datapoints.
Statistical significance for the relations between groups is provided in Appendix D.
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Figure 2: This example from Day 2 shows that many
AMT workers complete multiple HITs in less time and
with lower agreement in comparison to our experts.

to run another set of experiments that repeats the
same experiment (all qualifications enabled) across
three different days. Due to our constraint that
each worker can only participate in one experi-
ment, each of these experiments has a different
subset of qualified workers. As shown in the sec-
ond portion of Table 1, although the first and third
days yielded similar mean ratings/agreement in
terms of grammar (M=4.00, IAA=0.21 vs M=3.98,
IAA=0.18) and coherence (M=4.11, IAA=0.14 vs
M=4.05, IAA=0.13), the second day received lower
ratings across the board and had overall poor IAA
(see Table 1). Furthermore, ratings for relevance
in the third day (M=3.46) were significantly lower
than in the first two days (M=3.71), which indi-
cates that simply using all AMT qualifications is
not enough to achieve consistent results.

Many AMT workers do not spend enough time
reading the stories: The low overall agreement

also motivated us to examine the average time each
worker spent per HIT. While AMT reports Work-
TimeInSeconds in the results file made available to
task requesters, we observe similar to Akoury et al.
(2020) that these times are artificially inflated due
to workers who accept multiple HITs at the same
time and work on them sequentially (e.g., in differ-
ent tabs). Such workers are also frequently among
the most prolific in terms of HITs completed per
experiment (see Figure 2), since there is no max-
imum number of HITs per worker.9 We correct
for this by measuring the time between consecu-
tively submitted HITs by the same worker, which
can be derived by analyzing start and end times of
each HIT. This “actual time” differs considerably
from the AMT reported WorkTimeInSeconds: for
instance, a worker that AMT reports had a mean
work-time of 360 seconds had an actual mean work-
ing time10 of 22s and a median of 13s. To put these
numbers in perspective, this is about one-fourth of
the time that the fastest English teacher achieved
(see Section 4).

As it is impossible to carefully read a paragraph-
length story and assess all four properties in as little
as 13 seconds, we measure the impact on average

9Like most AMT tasks (Fort et al., 2011; Robinson et al.,
2019), the majority of HITs for our evaluations are provided by
a small fraction of workers. The majority of workers provided
ratings for only one or two stories while a very few productive
workers rated over 50% of the stories (see Figure 2).

10The mean work time is also not very representative as
workers typically accept multiple HITs, wait a period of time,
then submit all accepted HITs in quick succession.

https://www.reddit.com/r/mturk/comments/igh9g5/avoid_story_bot_ai/g2unm42/
https://www.reddit.com/r/mturk/comments/igh9g5/avoid_story_bot_ai/g2unm42/
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ratings when filtering out workers who spend too lit-
tle time per HIT (last row of Table 1). Specifically,
we remove judgments from workers whose median
time is below 40s (which is a low bar), and find that
on average about 42% of our ratings are filtered out
(ranging from 20%-72% across all experiments).11

Of our surveyed papers, only Akoury et al. (2020)
report actual work time, demonstrating that this is
a major issue in modern AMT evaluations of text
quality that most researchers have overlooked.

Impact of worker country of origin: While all
of the surveyed papers evaluate only English text,
only 11 of them reported using some kind of filter-
ing to ensure that workers have sufficient knowl-
edge of English. The default AMT setting does not
filter workers by country of origin, which poten-
tially increases the variance of results depending
on the English proficiency of workers who accept
HITs. To measure this, we re-run our experiment
with all qualifications, except we restrict the task
to only workers from countries that do not primar-
ily speak English (i.e., we exclude workers from
the US, Canada, UK, Australia, New Zealand, Ire-
land, and Singapore). The third portion of Table 1
shows that workers from non-English speaking
countries rated coherence, relevance, and gram-
mar12 significantly lower than identically-qualified
workers from English-speaking countries (Day 1-
3). Thus, researchers rating English text should
restrict their tasks to English-speaking countries, al-
though Kennedy et al. (2020) find that many work-
ers use Virtual Private Networks (VPNs) to take
part in tasks restricted to those in the US.

3.3 Evaluating Machine-Generated Text

We now turn to AMT evaluation of machine-
generated stories produced by the GPT-2 model
described in subsection 3.1. Based on our previous
experiments with reference texts, we select the “all
qualifications” setting (i.e., workers from English-
speaking countries, approval rate > 90%, approved
HITs ≥ 1000) for all GPT-2 AMT tasks. We study

11We also ran experiments with even stricter qualification
filters (i.e., acceptance rate ≥ 99% and at least 10,000 ap-
proved tasks), but this made no notable difference to the per-
centage of data being filtered out (35%). This is most likely
due to the fact that most requesters are reluctant to reject HITs
regardless of quality, which results in an estimated 95% of
workers having an approval rate of 98% or above (Matherly,
2019; Wessling et al., 2017).

12There was no significant difference between grammar
ratings collected from raters from non-English speaking coun-
tries and ratings collected on Day 2.

two different conditions: (1) HITs contain a prompt
and a GPT-2 generated text, and (2) HITs contain a
prompt and both a human-written reference story
as well as a GPT-2 generated story. In the latter
case, we ask AMT workers to rate both texts on
each of the four properties. Overall, we observe
that workers cannot effectively distinguish between
reference and model-generated stories when they
are evaluated separately (in terms of average rat-
ings), but that this distinction emerges clearly when
they are presented with both types of stories in the
same HIT.

When presented only GPT-2 generated text,
AMT worker ratings rate them similarly to ref-
erence texts, despite obviously worse quality:
In our first experiment, we follow the protocol
from our experiments with human-written refer-
ence stories, showing AMT workers a prompt and
a model-generated story and asking them to rate it
on the same attributes (grammar, coherence, rele-
vance, and likability). The results of this evaluation
are presented in the upper row of Table 2 along
with the three sets of ratings of reference stories
obtained with the same “all qualifications” setting
from before (Days 1-3 in Table 1).

Surprisingly, GPT-2 output is not consistently
rated significantly lower than human-written text.
For instance, workers in Day 2 rated human-written
stories similarly to the GPT-2 generated stories in
terms of grammar (M=3.86 vs. M=3.94) and co-
herence (M=3.92 vs. M=3.82), while workers in
Day 3 rated human-written stories as similarly rel-
evant to the prompt as GPT-2 output (M=3.46 vs.
M=3.44). Depending on which reference day we
compare the GPT-2 output to, GPT-2 is rated simi-
larly to human-written stories in terms of all four
properties, which indicates that this evaluation is
uninformative; nevertheless, the majority of sur-
veyed papers use exactly this task design to obtain
ratings for model-generated output.

Asking workers to rate both human-written
and model-generated stories side-by-side im-
proves ratings: We hypothesize that the previ-
ous result is due to scale calibration differences be-
tween the two settings: when repeatedly confronted
with incoherent model-generated text, a worker
may be more generous with their ratings compared
to if they only see coherent human-written text.
Thus, we explore whether their ratings can be bet-
ter calibrated by asking them to rate both types of
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Raters Type of text Grammar Coherence Relevance Likability
MeanSTD IAA% MeanSTD IAA% MeanSTD IAA% MeanSTD IAA%

AMT workers fail to effectively distinguish between human written and GPT-2 generated stories

AMT Ref. (Day 1) 4.000.92 0.2115.5 4.110.96 0.1416.5 3.711.26 0.2710 3.371.18 0.117.5

AMT Ref. (Day 2) 3.860.92 -0.0310.5 3.920.98 -0.036.5 3.711.08 0.0211 3.730.97 -0.048.5

AMT Ref. (Day 3) 3.980.96 0.1811 4.050.94 0.1310.5 3.461.29 0.268 3.421.16 0.074.5

AMT GPT-2 3.940.93 0.1117.5 3.821.12 0.057.5 3.441.41 0.107 3.421.25 0.024.5

AMT workers score GPT-2 lower when also presented with reference text

AMT Reference 3.830.99 0.1312.5 3.831.1 0.078 3.491.26 0.208 3.481.08 0.036.5

AMT GPT-2 3.820.90 0.1012 3.391.1 0.049.5 2.701.26 0.066.5 2.991.14 -0.044

Teachers rate GPT-2 generated stories lower than AMT workers

Teachers Reference 4.500.83 0.1935.5 4.380.91 0.1425 3.821.38 0.2516 3.691.30 -0.015

Teachers GPT-2 4.560.62 0.0024.5 3.731.19 0.1713 2.541.49 0.5425.5 2.961.46 -0.073

Table 2: Comparison of AMT workers and expert teachers on both human and machine-generated text. Inter-
annotator agreement (IAA) between the three raters is measured with Krippendorff’s α as well as the percentage
of stories for which all three raters exactly agreed on a rating (the latter is subscripted). Statistical significance for
the relations between groups is provided in Appendix C and Appendix D.

stories side-by-side, using the same qualification
settings as for the other experiments. The results
of this experiment are presented in the middle row
of Table 2. Workers score GPT-2 generated stories
significantly lower than reference stories on coher-
ence (M=3.39 vs. M=3.83), relevance (M=2.70
vs. M=3.49), and likability (M=2.99 vs. M=3.48),
which is in line with our expectations. Their rat-
ings for grammar (M=3.82 vs. M=3.83) are similar
for both types of text, which we also observe with
expert teacher ratings in Section 4 and is expected
since GPT-2’s output is generally grammatical.

4 Evaluation by expert teachers

The experiments in the previous section demon-
strate the unreliability of AMT ratings for open-
ended text generation, even when qualifications are
used to restrict the task to ostensibly reliable work-
ers. In this section, we compare the ratings pro-
duced by AMT workers to those of expert raters,
specifically a set of three English teachers, and
discover significant deviations between the two
groups. Though they rated both types of stories
separately, their ratings clearly distinguish between
human-written references and machine-generated
stories. We also conducted post-task interviews
with the teachers and organized a mediation session
to discuss stories with high disagreement, observ-
ing that they reach consensus after discussion in
about 80% of cases.

Recruiting English teachers: We choose En-
glish teachers as experts for our story generation
task because they regularly evaluate student-written

papers and are experienced at detecting both low-
level grammatical mistakes as well as discourse-
level issues with logical coherence. The three
teachers were recruited from the authors’ personal
networks, and each of them either has a degree
in teaching English as a Second Language or a
CELTA certificate.13 They were paid $125 each for
participating in our experiments, which required
them to rate the same 200 human-written stories
and 200 GPT-2 generated stories on the same four
properties as that of the AMT workers, given an
identical task interface.14

Unlike AMT workers, teachers rate reference
stories higher than GPT-2 generated ones: We
asked teachers to first rate the 200 reference stories,
and then a week later to rate the GPT-2 generated
stories. Just like the AMT workers, they were not
told that the text in the second task was machine-
generated. Importantly, we used the same set of
teachers for both tasks, so they already had sig-
nificant experience with the task when rating the
machine-generated text (as opposed to using new
AMT workers for each experiment).

The results of this evaluation are presented in
the last row of Table 2. Unsurprisingly, teach-
ers rated human-written stories significantly higher
than GPT-2 generated stories in terms of coher-
ence (M=4.38 vs. M=3.73), relevance (M=3.82 vs.
M=2.54), and likability (M=3.69 vs. M=2.96) (all

13Certificate in Teaching English to Speakers of Other Lan-
guages.

14The teachers completed their ratings using an identical
version of our task deployed on the AMT sandbox environ-
ment.
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p’s<0.001). On the other hand, they rated human-
written stories and GPT-2 generated stories as sim-
ilar in terms of grammar (M=4.50 vs. M=4.56).
Moreover, teachers’ ratings of human-written sto-
ries are considerably higher than AMT ratings for
all attributes except likability (M=3.69) which de-
pending on the day was rated lower (MDay1=3.37)
or higher (MDay2=3.73) by the AMT workers. Sim-
ilarly, teachers’ ratings of GPT-2 stories are lower
than the ratings we obtained from AMT workers
for coherence (M=3.73 vs. M=4.11), relevance
(M=2.54 vs. M=3.71), and likability (M=2.96 vs.
M=3.37).

Teachers need to see many examples to prop-
erly calibrate their ratings: In post-task inter-
views, all teachers reported that it took them 10-20
stories on average to calibrate their ratings. Since
most AMT workers complete only one to two HITs,
they do not have similar time to get acquainted with
the task; this may suggest that having a pre-task
training phase can improve worker calibration.

Coherence is difficult to rate for machine-
generated text: The teachers unanimously re-
port that while coherence is easy to rate for ref-
erence stories (since most of them are largely co-
herent), it is the most difficult property to rate for
GPT-2 generated stories. Since they did not know
that they were rating machine-generated text, they
spent time trying to make sense of the author’s
possible intent in producing many of the strange
artifacts and hallucinations common to output of
neural language models (Holtzman et al., 2019). In
contrast, relevance turned out to be the easiest prop-
erty of machine-generated text for teachers to rate,
which is expected as many of GPT-2’s stories devi-
ate very quickly from the prompt (see Figure 1).

GPT-2 generated stories are much harder for
teachers to rate overall: All teachers reported
struggling more when rating GPT-2 stories, a fact
reflected in their average rating time per story in-
creasing significantly from 69.8 seconds to 87.3
seconds (p<0.05). In contrast, the average rating
time of AMT workers decreased from 135.3 sec-
onds for human-written text (Day 1) to 91.5 sec-
onds for GPT-2 text (p<0.05)15. Teachers also re-
ported having to recalibrate their scale when rating

15This time was computed by the researchers to account for
workers accepting multiple HITs at the same time, however,
the WorkTimeInSeconds reported in the AMT results shows
similar trends.

the GPT-2 generated stories, as the stories were sig-
nificantly worse than the human-written text. Con-
sequently, they suggested that it would be easier
to calibrate their scale had the GPT-2 output been
presented beside the human-written text, which
supports the results from our joint rating task with
AMT workers. Finally, the teachers suggested that
creating a standardized rubric would greatly facil-
itate the rating process. This step is even more
important as machine-generated text faces different
issues than human-written text.

Resolving teacher disagreement: One advan-
tage of using human expert raters is that we can
easily have them discuss examples on which they
disagree. We arranged a mediation meeting be-
tween two of the three teachers to discuss 60 stories
on which they showed the highest disagreement (3
attributes × 10 stories × 2 types, we excluded lika-
bility due to its subjective nature). In this meeting,
they were first asked to rate the stories again, with-
out being provided their previous rating. In about
20% of cases, one of the teachers disagreed with
their own previous rating due to honest lapses of
judgment. Another common reason for disagree-
ment was missing world knowledge (see Figure 1,
right). One more reason for disagreement, a confu-
sion about how to rate slang in terms of grammati-
cality. While the text was not correct in the view
of the official grammar, it was appropriate for the
prompt, so one teacher rated it high while the other
rated it low. Overall, after discussing examples that
they still disagreed on after re-rating, teachers were
able to come to a consensus on 80% of the stories;
the remaining disagreements persisted due to indi-
vidual differences in strictness. See Appendix C
for details on the mediation meeting.

Replicating the study on Upwork: We recog-
nize that replicating our study is difficult without
access to a network of English teachers. As such,
we performed the same experiment using three cer-
tified teachers recruited on a freelance platform,
Upwork.16 The teachers were paid $175 for evalu-
ating the same 200 human-written and 200 GPT-2
generated stories using the exact same setup as in
subsection 3.1. It took approximately one week
to collect the data (including break between rating
human-written and GPT-2 generated stories). The
results obtained via Upwork were comparable with
the results obtained from the English teachers de-

16https://www.upwork.com

https://www.upwork.com
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scribed in this section, i.e. the Upwork teachers
rated human-written stories higher for coherence,
relevance, and likability than the GPT-2 generated
stories (all p’s<0.001). Interestingly, their IAA was
higher than the English teachers recruited from the
authors’ personal networks. The details of this
experiment are provided in the Appendix B.

5 Related Work

Our work is related to previous studies of human
evaluation of text quality as well as collecting judg-
ments using Amazon Mechanical Turk.

Human evaluation of text quality: Most previ-
ous studies on human evaluation concentrate on
constrained generation domains, such as machine
translation (Guzmán et al., 2015; Graham et al.,
2017; Toral et al., 2018; Castilho, 2021) or sum-
marization (Gillick and Liu, 2010; Iskender et al.,
2020). Other studies evaluate very short, often one
sentence long, outputs (Grundkiewicz et al., 2015;
Mori et al., 2019; Khashabi et al., 2021).

Even professional translators struggle when eval-
uating longer machine translated texts (Castilho,
2021). Creative texts, such as stories, are less con-
strained than translated texts, but researchers con-
tinue to employ crowd workers to evaluate creative
texts, often without evaluating reference texts (see
Section 2). Previous studies have asked workers to
choose from (Mori et al., 2019) or distinguish be-
tween human-written and machine-generated texts
(Garbacea et al., 2019; Ippolito et al., 2020; Clark
et al., 2021).

Data collection using AMT: Many previous
works raise concerns about the reliability of data
collected on AMT (Necka et al., 2016; Matherly,
2019; Ahler et al., 2020). Reluctance of requesters
to reject HITs leads to positive bias in workers’
qualifications (Matherly, 2019). Furthermore, a
large number of responses are provided by small
number of productive workers (Fort et al., 2011;
Robinson et al., 2019). Researchers also report an
increasing number of workers use VPNs to mask
their location (Bauer et al., 2020) and contribute
lower-quality data (Moss and Litman; Ahler et al.,
2020). Hence, simple quality control measures,
such as approval rate or the country of residence
as suggested in (Berinsky et al., 2012), may not
be sufficient to effectively filter workers who are
spamming a task.

6 Recommendations & Conclusion

Our experiments show that evaluating open-ended
generated text is an incredibly challenging task
even for expert raters. While AMT is a conve-
nient and affordable solution, we observe that high
variance between workers, poor calibration, and
cognitively-demanding tasks can lead researchers
to draw misleading scientific conclusions (e.g., that
human-written text is “worse” than GPT-2’s). Sim-
ple fixes such as adding strict worker qualifications
do not address the root of the problem. As such,
we recommend future AMT evaluations imple-
ment additional quality control mechanisms (some
of which require custom task setups on external
servers) such as (1) filtering workers by observed
time spent per HIT rather than WorkTimeInSec-
onds, (2) specifying a maximum number of items
per worker, (3) employing a pre-task language pro-
ficiency test, and (4) providing training HITs to
allow workers to calibrate their ratings. Further-
more, we show that researchers can improve rating
calibration by presenting machine-generated text
alongside human reference text. That said, expert
raters such as linguists or language teachers should
be used whenever possible as they have already
been trained to evaluate written text, and it is not
much more expensive (it cost us $144 to rate 200
stories with AMT vs. $187.50 with English teach-
ers vs. $262.5 with Upwork.

7 Ethical Considerations

As with all research that makes use of human sub-
jects, we must carefully reflect on our methodol-
ogy to minimize the risk of harm to those we ask
to evaluate open-ended texts. Specifically, texts
from social media sites like Reddit may contain
racist, sexist, and other forms of vulgar content.
Additionally, neural language models like GPT-
2, which have been trained on open domain text
crawled from the web, have been shown to generate
similarly offensive content. As such, we advocate
adequately warning any humans who take part in
open-ended text evaluation of the potential for such
harms (as we did in our research).

Additionally, crowd workers are frequently un-
derpaid for their labor, which harms both the qual-
ity of the research, and more importantly, the ability
of these crowd workers to earn an adequate living.
As such, we report our hourly wage for both crowd
workers and experts. We ensure that crowd work-
ers earn at least $14 per hour by assuming 50–55
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seconds per HIT (though on average our crowd
workers were paid substantially higher due to the
low average time to completion on each HIT). Our
experts averaged around $20 per hour (not counting
mediation).
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Qualifications

Approval Rate 90% (4) 95% (3) 97% (1) 99% (1)
Accepted HITs 500 (1) 1000 (5) 5000 (1)
English Resident (6) Native Speaker (4) Self-reported (1)
Other Complete all ratings (1) Passed quality check (1)

Payment $0.05 - $2 per HIT (8) $12 - $20 per hour (2)

Number of Items < 100 items (9) 100 items (14) > 100 items (20) not reported (5)

Number of Raters < 3 raters (3) 3 raters (16) 5 raters (13) > 5 raters (3)

Likert Scale 3-point (4) 4-point (3) 5-point (24) 6-point (1)

Ranking Task two texts (19) more texts (4)

Text Length sentence (28) paragraph (21)

Table A1: Results of the survey from Section 2. Numbers in brackets refer to the number of papers/experiments
which employed the given measure.

A Questions Used for the Survey

The paper survey described in Section 2 included
the following questions:

• type of the task

• length of rated text

• rated attributes

• rating scale

• labels used for ratings

• definitions of each attribute

• instructions provided to raters

• qualifications and quality control measures
employed

• number of rated items

• number of rated systems

• number of raters per item

• inclusion of ground truth

• monetary compensation

B Collecting Ratings on Upwork

We also hired three teachers using the freelancing
platform Upwork1. The teachers were paid $175 to
evaluate the same 200 human-written stories and
200 GPT-2 generated stories. They were asked to
perform the ratings on the AMT platform in order
to use the same interface as workers on AMT. Sim-
ilarly to the teachers recruited from the authors’
personal network, the teachers recruited on Up-
work were asked to rate the 200 human-written
stories first and then, after a few days break, pro-
vide the ratings for the GPT-2 generated stories.
Furthermore, Upwork teachers also held TEFL,2

TESOL,3 or CELTA13 certificates. Table A3 shows
mean ratings and agreement for the data collected
on Upwork. Similarly to the results described in
Section 4 and summarized in Table A5, the average
scores for coherence, relevance, and likability are
higher for the human-written stories than for the
GPT-2 generated stories (see Table A4).

1https://www.upwork.com/
2Teaching English as a Foreign Language.
3Teaching English to Speakers of Other Languages

https://www.upwork.com/
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Authors Year Title Venue
Akoury et al. 2020 STORIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story Generation EMNLP
Alshomary et al. 2020 Target Inference in Argument Conclusion Generation ACL
Bosselut et al. 2018 Discourse-Aware Neural Rewards for Coherent Text Generation EMNLP
Brahman and Chaturvedi 2020 Modeling Protagonist Emotions for Emotion-Aware Storytelling EMNLP
Chakrabarty et al. 2020b Generating similes effortlessly like a Pro: A Style Transfer Approach for Simile Generation EMNLP
Chakrabarty et al. 2020a R3: Reverse, Retrieve, and Rank for Sarcasm Generation with Commonsense Knowledge ACL
Clark et al. 2018 Neural Text Generation in Stories Using Entity Representations as Context NAACL
Donahue et al. 2020 Enabling Language Models to Fill in the Blanks ACL
Fan et al. 2018 Hierarchical Neural Story Generation ACL
Fang et al. 2020 Video2Commonsense: Generating Commonsense Descriptions to Enrich Video Captioning EMNLP
Goldfarb-Tarrant et al. 2020 Content Planning for Neural Story Generation with Aristotelian Rescoring EMNLP
Gorinski and Lapata 2018 What‘s this Movie about? A Joint Neural Network Architecture for Movie Content Analysis NAACL
Goyal and Durrett 2020 Neural Syntactic Preordering for Controlled Paraphrase Generation ACL
He et al. 2019 Pun Generation with Surprise NAACL
Hegel et al. 2020 Substance over Style: Document-Level Targeted Content Transfer EMNLP
Holtzman et al. 2018 Learning to Write with Cooperative Discriminators ACL
Hsu et al. 2019 Visual Story Post-Editing ACL
Ippolito et al. 2019 Unsupervised Hierarchical Story Infilling NAACL
Jiang et al. 2020 Neural CRF Model for Sentence Alignment in Text Simplification ACL
Krishna et al. 2020 Reformulating Unsupervised Style Transfer as Paraphrase Generation EMNLP
Kriz et al. 2019 Complexity-Weighted Loss and Diverse Reranking for Sentence Simplification NAACL
Li et al. 2018 Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer NAACL
Lin et al. 2020 Learning to Generate Multiple Style Transfer Outputs for an Input Sentence ACL
Liu et al. 2019 Towards Explainable NLP: A Generative Explanation Framework for Text Classification ACL
Mallinson et al. 2020 Zero-Shot Crosslingual Sentence Simplification EMNLP
Martins et al. 2020 Sparse Text Generation EMNLP
Mir et al. 2019 Evaluating Style Transfer for Text NAACL
Peng et al. 2018b Towards Controllable Story Generation NAACL
Pezeshkpour et al. 2018 Embedding Multimodal Relational Data for Knowledge Base Completion EMNLP
Qin et al. 2020 Embedding Multimodal Relational Data for Knowledge Base Completion EMNLP
Qin et al. 2019 Counterfactual Story Reasoning and Generation EMNLP
Rao and Tetreault 2018 Dear Sir or Madam, May I Introduce the GYAFC Dataset: Corpus, Benchmarks and Metrics for Formality Style Transfer NAACL
Rashkin et al. 2020 PLOT MACHINES: Outline-Conditioned Generation with Dynamic Plot State Tracking EMNLP
Shen et al. 2019 Towards Generating Long and Coherent Text with Multi-Level Latent Variable Models ACL
Sudhakar et al. 2019 “Transforming” Delete, Retrieve, Generate Approach for Controlled Text Style Transfer EMNLP
Tu et al. 2019 Generating Diverse Story Continuations with Controllable Semantics EMNLP
Tu et al. 2019 Can Humor Prediction Datasets be used for Humor Generation? Humorous Headline Generation via Style Transfer ACL
Xu et al. 2020 MEGATRON - CNTRL : Controllable Story Generation with External Knowledge Using Large-Scale Language Models EMNLP
Yang et al. 2019 An End-to-End Generative Architecture for Paraphrase Generation EMNLP
Modi and Parde 2019 The Steep Road to Happily Ever After: An Analysis of Current Visual Storytelling Models NAACL
Yu and Wan 2019 How to Avoid Sentences Spelling Boring? Towards a Neural Approach to Unsupervised Metaphor Generation NAACL
Yu et al. 2018 A Neural Approach to Pun Generation ACL
Yu et al. 2020 Routing Enforced Generative Model for Recipe Generation EMNLP
Zhang and Tetreault 2019 This Email Could Save Your Life: Introducing the Task of Email Subject Line Generation ACL
Zang et al. 2019 Automated Chess Commentator Powered by Neural Chess Engine ACL

Table A2: List of Surveyed Papers.
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Experiment description Grammar Coherence Relevance Likability
MeanSTD IAA% MeanSTD IAA% MeanSTD IAA% MeanSTD IAA%

Reference 4.280.78 0.2926 4.550.66 0.1130.5 4.250.88 0.4926.4 4.021.16 0.0114.5

GPT-2 4.250.82 0.1219 3.990.98 0.0612.5 3.021.53 0.255 3.681.15 0.0510.5

Table A3: Ratings of human-written reference stories and GPT-2 generated stories collected on Upwork. Inter-
annotator agreement (IAA) between the three raters is measured with Krippendorff’s α well as the percentage of
stories for which all three raters exactly agreed on a rating (the latter is subscripted)

mean (human) mean (GPT-2) difference 95% CI lower 95% CI upper t df p-val
grammar 4.28 4.25 0.03 -0.06 0.12 0.72 1194.9 0.47
coherence 4.55 3.99 0.56 0.46 0.65 11.46 1044.3 <0.001
relevance 4.02 3.02 1.00 0.85 1.15 12.82 1103.8 <0.001
likability 4.23 3.83 0.40 0.30 0.53 7.24 1143.4 <0.001

Table A4: Welch‘s t-test for ratings collected on Upwork (human-written stories vs GPT-2 generated stories).
Human-written stories were rated higher on coherence, relevance, and likability than GPT-2 generated stories.
These results are similar to the one obtained from English teachers described in Section 4.

C Details on Post-rating Interviews

Two mediation meetings were organized with two
of the three teachers (due to availability) over
Zoom 4. The teachers were asked to reevaluate
60 stories on which they showed disagreement (3
attributes × 10 stories × 2 types; likability was ex-
cluded due to its subjective nature). Each meeting
took approximately 2h (including a short break)
and was led by one of the authors. The teachers
were shown one story at a time and were asked to
reevaluate it on the given attribute. In about 20% of
the cases, the teachers agreed with each other, sug-
gesting that the previous disagreement was due to
honest lapses of judgment. As for the cases where
disagreement occurred, each was asked to provide
a justification for their ratings. Often hearing the
other party’s argument enabled them to see the
text from a different perspective and understand
the ratings of the other person. This process of-
ten resulted in them adjusting their own ratings.
Common reasons for disagreement which could be
resolved during the mediation meeting included:
world knowledge, difference in understanding of
the prompt and its relation to the text (e.g., prompt
enforcing specific style), difference in the way they
treated author’s comments which were sometimes
present at the beginning of the story, and rationaliz-
ing connections between the sentences.

After each batch, consisting of ratings of both
human-written stories and GPT-2 generated stories,
each of the three teachers took part in a short one-
on-one interview (∼ 10min each). They were asked
the following questions:

4https://zoom.us/

1. How long did it take you to calibrate your
ratings?

2. Explain in more detail how you rated co-
herence/grammar/likability/relevance? What
was the process. Did you have to reread the
text?

3. How did you calibrate the ratings for co-
herence/grammar/likability/relevance? What
constituted a 5? What about a 1?

4. How often did you take breaks?

5. Which attribute was the easiest to calibrate?
Which was the most difficult?

6. Any other comments or suggestions?

Additionally, after the second batch of GPT-2
stories, the teachers were also asked: (1) which
batch was better written, (2) which batch included
more computer generated stories and to what extent,
(3) whether they had to recalibrate their ratings, and
(4) whether they would prefer to see both batches
at the same time.

D Statistical Analysis

https://zoom.us/
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mean (human) mean (GPT-2) difference 95% CI lower 95% CI upper t df p-val
grammar 4.50 4.55 0.05 -0.14 0.03 -1.27 1111.7 0.21
coherence 4.38 3.73 0.65 0.53 0.77 10.63 1119.6 <0.001
relevance 3.82 2.54 1.28 1.12 1.44 15.45 1190.7 <0.001
likability 3.69 2.96 0.73 0.57 0.89 9.16 1182 <0.001

Table A5: Welch‘s t-test for ratings collected in the experiment described in Section 4 (teachers’ ratings). Human-
written stories were rated higher for coherence, relevance, and likability than GPT-2 generated stories.

Figure A1: AMT interface for evaluation of one story.

Df Sum Sq Mean Sq F value Pr(>F) η2p
Group 3 13.63 4.54 4.90 0.002 0.01
Residuals 2396 2223.51 0.93

Table A6: One-way ANOVA investigating the effect of group (Day 1, Day 2, Day 3, and workers from non-English-
speaking countries) on the ratings of grammar of the reference texts. Partial eta squared (η2p) is provided for the
effect size (η2p = 0.01 indicates small effect size; η2p = 0.06 indicates medium effect size; η2p = 0.14 indicates large
effect size (Cohen, 1988)).

Day 1 Day 2 Day 3
Day 2 0.08
Day 3 1.00 0.20
NNS 0.01 1.00 0.03

Table A7: Pairwise post-hoc test with Bonferroni adjustment for the ratings of grammar between Day 1, Day
2, Day 3, and non-English speaking countries (NNS). The numbers provided in the table are p-values for the
given pairwise comparison. Grammar ratings provided by the workers from non-English speaking countries are
significantly different from ratings provided by the workers from English-speaking countries on Day 1 and Day 3 5

Df Sum Sq Mean Sq F value Pr(>F) ) η2p
Group 3 161.28 53.76 51.35 <0.001 0.06
Residuals 2396 2508.21 1.05

Table A8: One-way ANOVA investigating the effect of group (Day 1, Day 2, Day 3, and workers from non-English-
speaking countries) on the ratings of coherence of the reference texts. Partial eta squared (η2p) is provided for the
effect size (η2p = 0.01 indicates small effect size; η2p = 0.06 indicates medium effect size; η2p = 0.14 indicates large
effect size (Cohen, 1988)).
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Figure A2: AMT interface for evaluation of both types of stories (GPT-2 and human reference).

Day 1 Day 2 Day 3
Day 2 1.00
Day 3 <0.001 <0.001
NNS <0.001 <0.001 0.02

Table A9: Pairwise post hoc test with Bonferroni adjustment for the ratings of coherence between Day 1, Day
2, Day 3, and non-English speaking countries (NNS). The numbers provided in the table are p-values for the
given pairwise comparison. Ratings of coherence provided by raters from non-English speaking countries are
significantly different from ratings of workers from English-speaking countries. Furthermore, there are some
difference between Day 1, Day 2, and Day 2.

Df Sum Sq Mean Sq F value Pr(>F) η2p
Group 3 89.99 30.00 19.92 <0.001 0.02
Residuals 2396 3607.85 1.51

Table A10: One-way ANOVA investigating the effect of group (Day 1, Day 2, Day 3, and workers from non-
English-speaking countries) on the ratings of relevance of the reference texts. Partial eta squared ( η2p) is provided
for the effect size (η2p = 0.01 indicates small effect size; η2p = 0.06 indicates medium effect size; η2p = 0.14 indicates
large effect size (Cohen, 1988)).
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Day 1 Day 2 Day 3
Day 2 0.01
Day 3 1.00 0.14
NNS <0.001 <0.001 <0.001

Table A11: Pairwise post hoc test with Bonferroni adjustment for the ratings of relevance between Day 1, Day 2,
Day 3, and non-English speaking countries (NNS). The numbers provided in the table are p-values for the given
pairwise comparison. Ratings obtained from workers from non-English speaking countries differ significantly
from ratings obtained from workers from English-speaking countries on Day 1, Day 2, and Day 3. Furthermore,
there is a significant difference between ratings collected on Day 1 and Day 2.

Df Sum Sq Mean Sq F value Pr(>F) η2p
Group 3 62.70 20.90 15.89 <0.001 0.02
Residuals 2396 3151.22 1.32

Table A12: One-way ANOVA investigating the effect of group (Day 1, Day 2, Day 3, and workers from non-
English-speaking countries) on the ratings of likability of the reference texts. Partial eta squared (η2p) is provided
for the effect size (η2p = 0.01 indicates small effect size; η2p = 0.06 indicates medium effect size; η2p = 0.14 indicates
large effect size (Cohen, 1988)).

Day 1 Day 2 Day 3
Day 2 <0.001
Day 3 1.00 <0.001
NNS 1.00 <0.001 0.75

Table A13: Pairwise post hoc test with Bonferroni adjustment for the ratings of likability between Day 1, Day
2, Day 3, and non-English speaking countries (NNS). The numbers provided in the table are p-values for the
given pairwise comparison. Ratings provided by workers from non-English speaking countries differ significantly
from ratings obtained from workers from English-speaking countries on Day 2. Furthermore, there are significant
differences between ratings obtained on Day 1 and Day 2, as well as between ratings obtained on Day 2 and Day
3.

mean (human) mean (GPT-2) difference 95% CI lower 95% CI upper t df p-val
grammar 4.00 3.94 0.06 -0.05 0.16 1.06 1197.9 0.29
coherence 4.11 3.82 0.29 0.18 0.42 4.97 1169.1 <0.001
relevance 3.71 3.44 0.27 0.12 0.43 3.54 1184.7 <0.001
likability 3.37 3.42 0.05 -0.18 0.09 -0.64 1194.5 0.52

Table A14: Welch‘s t-test on ratings collected on AMT for human-written stories (Day 1) and GPT-2 generated
stories. Human-written stories are being rated higher for coherence and more relevance than GPT-2 generated
stories (p<0.05).

mean (human) mean (GPT-2) difference 95% CI lower 95% CI upper t df p-val
grammar 3.86 3.94 0.08 -0.19 0.03 -1.50 1197.9 0.14
coherence 3.92 3.82 0.10 -0.02 0.23 1.72 1176.5 0.09
relevance 3.71 3.44 0.27 0.13 0.41 3.69 1123.5 <0.001
likability 3.73 3.42 0.31 0.19 0.44 4.89 1128.9 <0.001

Table A15: Welch‘s t-test on ratings collected on AMT for human-written stories (Day 2) and GPT-2 generated
stories. Human-written stories were rated higher for relevance and likability than GPT-2 generated stories (p<0.05).

mean (human) mean (GPT-2) difference 95% CI lower 95% CI upper t df p-val
grammar 3.98 3.94 0.04 -0.07 0.15 0.70 1196.4 0.48
coherence 4.05 3.82 0.23 0.12 0.36 3.98 1163.5 <0.001
relevance 3.46 3.44 0.02 -0.13 0.17 0.27 1188.9 0.80
likability 3.42 3.42 0.00 -0.14 0.14 0.00 1192.5 1

Table A16: Welch‘s t-test for ratings collected on AMT for human-written stories (Day 3) and GPT-2 generated
stories. Human-written stories were rated higher for coherence than GPT-2 generated stories (p<0.05).
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mean (human) mean (GPT-2) difference 95% CI lower 95% CI upper t df p-val
grammar 3.82 3.94 0.12 -0.23 -0.01 -2.11 1183.1 0.04
coherence 3.45 3.82 0.37 -0.49 -0.23 -5.42 1194.2 <0.001
relevance 3.25 3.44 0.19 -0.35 -0.04 -2.50 1185 0.01
likability 3.32 3.42 0.10 -0.24 0.04 -1.41 1197.9 0.16

Table A17: Welch‘s t-test for ratings collected on AMT for human-written stories (non-English speaking countries)
and GPT-2 generated stories. GPT-2 generated stories were rated higher for grammar, coherence, and relevance
than human-written stories (p<0.05)

mean (human) mean (GPT-2) difference 95% CI lower 95% CI upper t df p-val
grammar 3.83 3.82 0.01 -0.09 0.12 0.28 1188.1 0.78
coherence 3.83 3.39 0.44 0.32 0.57 6.92 1198 <0.001
relevance 3.49 2.70 0.79 0.65 0.93 10.85 1198 <0.001
likability 3.48 2.99 0.49 0.37 0.62 7.72 1195.2 <0.001

Table A18: Welch‘s t-test for ratings collected on AMT for human-written stories and GPT-2 generated stories
(both stories shown in one HIT). GPT-2 generated stories were rated lower for coherence, relevance, and likability
than human-written stories (p<0.05) which is in line with the ratings provided by English teachers.


