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Abstract

This tutorial surveys the latest technical
progress of syntactic parsing and the role
of syntax in end-to-end natural language
processing (NLP) tasks, in which semantic
role labeling (SRL) and machine translation
(MT) are the representative NLP tasks that
have always been beneficial from informative
syntactic clues since a long time ago, though
the advance from end-to-end deep learning
models shows new results. In this tutorial,
we will first introduce the background and
the latest progress of syntactic parsing and
SRL/NMT. Then, we will summarize the key
evidence about the syntactic impacts over
these two concerning tasks, and explore the
behind reasons from both computational and
linguistic background.

1 Tutorial Content

Syntax is the insightfulness about formal relative
position inside languages, whose mathematical
formalism was pioneered by Chomsky (1957).
Syntactic parsing has been enduring for a
significant progress since deep learning was
fully introduced into natural language processing
(NLP). We identify two development stages for
parsing techniques by considering whether deep
learning was involved or not. For the parsers
that were built on traditional machine learning
models, most work focus on designing better
search algorithms or better structural modeling
about syntax, while few ever consider feature
engineering. For the parsers using deep learning
models, most work turn to more effective
and more salient representations, following the
same structural formalization since the times
of traditional parsers. We observe a series
of significant performance improvement since
2014 (Chen and Manning, 2014; Dozat and
Manning, 2017). In this part, we will survey

the key language representation improvement
for syntactic parsing. In general, syntactic
information contributes to other end-to-end NLP
tasks, such as SRL and MT. We summarize the
contribution of syntax to SRL and MT in Table 1.
Syntax in SRL. SRL or semantic parsing as a
computational job started since different semantic
annotated datasets were released in recent two
decades, which is trained by using PropBank
such as Palmer et al. (2005). During treebank
annotation, the semantic annotation may be
naturally assigned onto syntactic constituents, so
that it makes sense that the latter may help
the former in either of linguistic explanation or
machine learning procedure. Considering syn-
tactic information helps or not, the performance
variation of SRL may range about 5-10% in
terms of traditional models. However, there
has come new results since end-to-end SRL was
proposed. Nearly all state-of-the-art SRL models,
either span or dependency, have been based on
LSTM backbone since Zhou and Xu (2015a).
We attribute such a change of syntactic role
to the effective distributional and contextualized
representation offered by the LSTM from word
embedding. Note that word embedding may have
both syntactic and semantic sense.

Since the method by Zhou and Xu (2015b)
and Marcheggiani et al. (2017), deep-learning-
based SRL has obtained much less contribution
from syntactic input. For either span or
dependency SRL, deep models receive a less than
2% performance improvement even when perfect
syntax (gold syntax labels) is introduced as shown
by He et al. (2017a) and He et al. (2018a). We
re-implemented the model of Li et al. (2019)
and introduced a syntactic constraint in their span
selection from a strong parser, which indicates
that stronger syntax-agnostic models receive less
enhancement from syntax information.
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Tasks Attention Mechanism PreLM Syntax Effectiveness
attention self-attention biaffine

Syntactic parsing ++ ++ ++

SRL ++ ++
++ ++ + ++

NMT RNN ++ 0 + ++
Self-attention ++ 0 - -

Table 1: Role of different technical factors for the three NLP tasks. “++” denotes the significant performance
contribution when used alone; “+” denotes the moderate contribution; “0” denotes mainly studies in zero/low-
resource scenarios; “-” denotes negative or little impact. The mark in the rightmost column indicates whether it is
overall effective when all marked factors to the left are combined.

Syntax in MT also endures a methodology
change from statistical machine translation (SMT)
(Brown et al., 1993) to neural machine translation
(NMT) (Sutskever et al., 2014; Bahdanau et al.,
2015) as the task of SRL. For typical SMT,
besides phrase based SMT (Och et al., 1999;
Koehn et al., 2003), syntactic (tree) based methods
have been well developed (Yamada and Knight,
2001; Mi et al., 2008). In some scenarios,
especially when the domain of the MT corpus
is similar to the domain of the parsing corpus,
the performance of tree based SMT is better than
phrase based SMT (Koehn, 2009). For NMT, it so
far achieves significant progress by using end-to-
end based structure since 2014 (Sutskever et al.,
2014; Bahdanau et al., 2015). Recently, self-
attention based transformer (Vaswani et al., 2017)
has become new state-of-the-art architecture in
NMT and gives a series of new state-of-the-art
benchmarks (Bojar et al., 2018; Marie et al., 2018;
Wang et al., 2018a; Marie et al., 2019). Syntax
information has been shown that it can improve
the performances of the recurrent neural network
(RNN) based NMT on conditions (Eriguchi et al.,
2016, 2017; Chen et al., 2017a; Li et al., 2017; Wu
et al., 2017; Chen et al., 2017b, 2018). However,
so far it has not been shown significantly widely
useful in self-attention based NMT. There are only
a few work (Ma et al., 2019) adopted the syntactic
information into the positional embedding of
Transformer. We will give a detailed analysis on
this issue by surveying the key technique details.

Linguistic in MT. In addition, we will investigate
why linguistic cognition and prior knowledge can
enhance the control of the dominant end-to-end
neural framework, which makes the translation
between a language pair proceed according to
the expected and interpretable way. On one
hand, linguistic cognition enables translation
model (1) to reduce translation errors that violate

common sense, such as over/under-translation
questions (Tu et al., 2016), troublesome words
modeling (Zhao et al., 2018b) and so on; (2)
to have some basic abilities of human translator,
for example, word importance modeling (Chen
et al., 2020), translation refinement (Song et al.,
2020), structured information (Xu et al., 2020),
diverse feature (Chen et al., 2020) and so on.
On the other hand, linguistic prior knowledge
(i.e. alignment, bilingual lexicon, phrase table,
and knowledge graphs) to alleviate the problem
of inadequacy target translations which are caused
by the language model property of the encoder-
decoder framework (Feng et al., 2017; Zhang
et al., 2017; Zhao et al., 2018a; Wang et al.,
2018b). Moreover, linguistic differences between
the source language and target language can learn
natural language representations that are easy to be
understood by the translation model, for example,
word order difference (Chen et al., 2019; Ding
et al., 2020), morphological differences (Ji et al.,
2019) and so on. Meanwhile, linguistic shared
feature between the source language and target
language can also enhance the understanding
and generation of natural language in MT, for
example, shared words (Artetxe et al., 2018),
image information (Yin et al., 2020), video
information (Wang et al., 2020) and so on.

2 Relevance to the Computational
Linguistics Community

The topics included in this tutorial, i.e., syntax
parsing, SRL, and MT, are all the classic ones to
the entire NLP/CL community. This tutorial is
primarily towards researchers who have a basic
understanding of deep learning based NLP. We
believe that this tutorial would help the audience
more deeply understand the relationship between
three classic NLP tasks, i.e., syntax parsing and
SRL/MT.
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Presenter: Hai Zhao Presenter: Rui Wang and Kehai Chen
1. Syntactic Parsing (50 min) 3. Syntax in MT (40 min) 4. Summary (20 min)
1.1 Traditional syntactic parsing 3.1 Basics of MT 4.1 Conclusion
1.2 Neural syntactic parsing 3.2 Syntax in RNN-based MT 4.2 Future trends
1.3 Basic of end-to-end NLP 3.3 Syntax in self-attention based MT
2. Syntax in SRL (40 min) 4.Linguistic in MT (30 min)
2.1 Basic of SRL 4.1 Linguistic cognition for MT
2.2 Linguistic, Syntax, and Semantics 4.2 Linguistic prior knowledge for MT
2.3 Syntax in end-to-end base SRL

Coffee Break (30 min)

Table 2: Tutorial outlines

3 Type of the Tutorial: Cutting-edge

We introduce the cutting-edge technologies.

4 Tutorial Outlines

We will present our tutorial in three hours. The
detailed tutorial outlines are shown in Table 1.

5 Breadth

20-30% of the tutorial covers work by the tutorial
presenters and 70-80% by other researchers.

6 Diversity Considerations

N/A

7 Specification of Any Prerequisites for
the Attendees

This tutorial is primarily aimed at researchers who
have a basic understanding of NLP.

8 Small reading list

• Deep Learning: Deep learning (LeCun et al.,
2015)

• Syntactic Parsing: Deep biaffine attention
for neural dependency parsing (Dozat and
Manning, 2016) and Constituency parsing
with a self-attentive encoder (Kitaev and
Klein, 2018).

• SRL: Syntax for semantic role labeling, to
be, or not to be (He et al., 2018b) and
Deep semantic role labeling: What works
and whats next (He et al., 2017b).

• Machine Translation: Statistical machine
translation (Koehn, 2009) and Neural ma-
chine translation by jointly learning to align
and translate (Bahdanau et al., 2015).

9 Presenters

1. Dr. Hai Zhao, Professor, Department of
Computer Science and Engineering, Shanghai Jiao
Tong University, China.
zhaohai@cs.sjtu.edu.cn

http://bcmi.sjtu.edu.cn/˜zhaohai

His research interest is natural language
processing. He has published more than 120
papers in ACL, EMNLP, COLING, ICLR, AAAI,
IJCAI, and IEEE TKDE/TASLP. He won the
first places in several NLP shared tasks, such as
CoNLL and SIGHAN Bakeoff and top ranking in
remarkable machine reading comprehension task
leaderboards such as SQuAD2.0 and RACE.

He has taught the course “natural language
processing” in SJTU for more than 10 years. He
is ACL-2017 area chair on parsing, and ACL-
2018/2019 (senior) area chairs on morphology and
word segmentation.
2. Dr. Rui Wang, Tenured Researcher, Advanced
Translation Technology Laboratory, National
Institute of Information and Communications
Technology (NICT), Japan
wangrui.nlp@gmail.com

https://wangruinlp.github.io

His research focuses on machine translation
(MT), a classic task in NLP. His recent interests
are traditional linguistic based and cutting-edge
machine learning based approaches for MT. He
(as the first or the corresponding authors) has
published more than 30 MT papers in top-tier
NLP/ML/AI conferences and journals, such as
ACL, EMNLP, ICLR, AAAI, IJCAI, IEEE/ACM
transactions, etc. He has also won several first
places in top-tier MT shared tasks, such as WMT-
2018, WMT-2019, WMT-2020, etc.

He has given several tutorial and invited talks in

zhaohai@cs.sjtu.edu.cn
http://bcmi.sjtu.edu.cn/~zhaohai
wangrui.nlp@gmail.com
https://wangruinlp.github.io
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conferences, such as CWMT, CCL, etc. He served
as the area chairs of ICLR-2021 and NAACL-
2021.
3. Dr. Kehai Chen, Postdoctoral Researcher,
Advanced Translation Technology Laboratory,
National Institute of Information and Communi-
cations Technology (NICT), Japan
khchen@nict.go.jp
https://chenkehai.github.io

His research focuses on linguistic-motivated
machine translation (MT), a classic NLP task in
AI. He has published more than 20 MT and NLP
papers in top-tier NLP/ML/AI conferences and
journals, such as ACL, ICLR, AAAI, EMNLP,
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, ACM Transactions on
Asian and Low-Resource Language Information
Processing, etc. He served as a senior program
committee of AAAI-2021.

10 Previous Venues and Approximate
Audience Sizes

There are some tutorials focusing on single NLP
tasks, such as NMT in ACL-2016/IJCNLP-2018,
semantic parsing in ACL-2018. In particular,
the NMT tutorial at ACL-2016 (with around 800
registrations) had attracted around 150 attendees
and the one at IJCNLP-2017 (with around 300
registrations) had attracted around 40 attendees.

Our tutorial will become the first one that
explores the relationship between syntactic impact
and end-to-end NLP tasks. As our topic is rather
broader, we hope that this tutorial will attract
around 100-200 attendees.

11 Special Requirements

None

12 Preferable Venue(s)

ACL-IJCNLP/EMNLP/NAACL-HLT/EACL

13 Open Access

Yes
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