@inproceedings{sathe-park-2021-automatic,
title = "Automatic Fact-Checking with Document-level Annotations using {BERT} and Multiple Instance Learning",
author = "Sathe, Aalok and
Park, Joonsuk",
editor = "Aly, Rami and
Christodoulopoulos, Christos and
Cocarascu, Oana and
Guo, Zhijiang and
Mittal, Arpit and
Schlichtkrull, Michael and
Thorne, James and
Vlachos, Andreas",
booktitle = "Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)",
month = nov,
year = "2021",
address = "Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.fever-1.11/",
doi = "10.18653/v1/2021.fever-1.11",
pages = "101--107",
abstract = "Automatic fact-checking is crucial for recognizing misinformation spreading on the internet. Most existing fact-checkers break down the process into several subtasks, one of which determines candidate evidence sentences that can potentially support or refute the claim to be verified; typically, evidence sentences with gold-standard labels are needed for this. In a more realistic setting, however, such sentence-level annotations are not available. In this paper, we tackle the natural language inference (NLI) subtask{---}given a document and a (sentence) claim, determine whether the document supports or refutes the claim{---}only using document-level annotations. Using fine-tuned BERT and multiple instance learning, we achieve 81.9{\%} accuracy, significantly outperforming the existing results on the WikiFactCheck-English dataset."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sathe-park-2021-automatic">
<titleInfo>
<title>Automatic Fact-Checking with Document-level Annotations using BERT and Multiple Instance Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aalok</namePart>
<namePart type="family">Sathe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joonsuk</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rami</namePart>
<namePart type="family">Aly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijiang</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Schlichtkrull</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic fact-checking is crucial for recognizing misinformation spreading on the internet. Most existing fact-checkers break down the process into several subtasks, one of which determines candidate evidence sentences that can potentially support or refute the claim to be verified; typically, evidence sentences with gold-standard labels are needed for this. In a more realistic setting, however, such sentence-level annotations are not available. In this paper, we tackle the natural language inference (NLI) subtask—given a document and a (sentence) claim, determine whether the document supports or refutes the claim—only using document-level annotations. Using fine-tuned BERT and multiple instance learning, we achieve 81.9% accuracy, significantly outperforming the existing results on the WikiFactCheck-English dataset.</abstract>
<identifier type="citekey">sathe-park-2021-automatic</identifier>
<identifier type="doi">10.18653/v1/2021.fever-1.11</identifier>
<location>
<url>https://aclanthology.org/2021.fever-1.11/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>101</start>
<end>107</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Fact-Checking with Document-level Annotations using BERT and Multiple Instance Learning
%A Sathe, Aalok
%A Park, Joonsuk
%Y Aly, Rami
%Y Christodoulopoulos, Christos
%Y Cocarascu, Oana
%Y Guo, Zhijiang
%Y Mittal, Arpit
%Y Schlichtkrull, Michael
%Y Thorne, James
%Y Vlachos, Andreas
%S Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)
%D 2021
%8 November
%I Association for Computational Linguistics
%C Dominican Republic
%F sathe-park-2021-automatic
%X Automatic fact-checking is crucial for recognizing misinformation spreading on the internet. Most existing fact-checkers break down the process into several subtasks, one of which determines candidate evidence sentences that can potentially support or refute the claim to be verified; typically, evidence sentences with gold-standard labels are needed for this. In a more realistic setting, however, such sentence-level annotations are not available. In this paper, we tackle the natural language inference (NLI) subtask—given a document and a (sentence) claim, determine whether the document supports or refutes the claim—only using document-level annotations. Using fine-tuned BERT and multiple instance learning, we achieve 81.9% accuracy, significantly outperforming the existing results on the WikiFactCheck-English dataset.
%R 10.18653/v1/2021.fever-1.11
%U https://aclanthology.org/2021.fever-1.11/
%U https://doi.org/10.18653/v1/2021.fever-1.11
%P 101-107
Markdown (Informal)
[Automatic Fact-Checking with Document-level Annotations using BERT and Multiple Instance Learning](https://aclanthology.org/2021.fever-1.11/) (Sathe & Park, FEVER 2021)
ACL