
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1577–1590
August 1–6, 2021. ©2021 Association for Computational Linguistics

1577

NAST: A Non-Autoregressive Generator with Word Alignment
for Unsupervised Text Style Transfer

Fei Huang, Zikai Chen, Chen Henry Wu, Qihan Guo, Xiaoyan Zhu, Minlie Huang∗
The CoAI group, DCST; Institute for Artificial Intelligence;

State Key Lab of Intelligent Technology and Systems;
Beijing National Research Center for Information Science and Technology;

Tsinghua University, Beijing 100084, China.
f-huang18@mails.tsinghua.edu.cn natnstart@gmail.com henrychenwu98@gmail.com

gqh18@mails.tsinghua.edu.cn zxy-dcs@tsinghua.edu.cn aihuang@tsinghua.edu.cn

Abstract
Autoregressive models have been widely used
in unsupervised text style transfer. Despite
their success, these models still suffer from
the content preservation problem that they usu-
ally ignore part of the source sentence and
generate some irrelevant words with strong
styles. In this paper, we propose a Non-
Autoregressive generator for unsupervised text
Style Transfer (NAST), which alleviates the
problem from two aspects. First, we observe
that most words in the transferred sentence can
be aligned with related words in the source sen-
tence, so we explicitly model word alignments
to suppress irrelevant words. Second, existing
models trained with the cycle loss align sen-
tences in two stylistic text spaces, which lacks
fine-grained control at the word level. The pro-
posed non-autoregressive generator focuses on
the connections between aligned words, which
learns the word-level transfer between styles.
For experiments, we integrate the proposed
generator into two base models and evaluate
them on two style transfer tasks. The re-
sults show that NAST can significantly im-
prove the overall performance and provide ex-
plainable word alignments. Moreover, the non-
autoregressive generator achieves over 10x
speedups at inference. Our codes are available
at https://github.com/thu-coai/NAST.

1 Introduction

Text style transfer aims at changing the text
style while preserving the style-irrelevant contents,
which has a wide range of applications, e.g., senti-
ment transfer (Shen et al., 2017), text formalization
(Rao and Tetreault, 2018), and author imitation
(Jhamtani et al., 2017). Due to the lack of parallel
training data, most works focus on unsupervised
text style transfer using non-parallel stylistic data.

The cycle consistency loss (Zhu et al., 2017),
a.k.a. the back-translation loss (Lample et al., 2018,

*Corresponding author: Minlie Huang.

Not great, but good atmosphere and great service

Not terrible, but not very goodSource:

Transferred:

Autoregressive Generation

(a) Existing Style Transfer Model

Not perfect , but indeedvery good

Not terrible , but not very goodSource:

Target:

(b) Observation of Word Alignment

Not perfect , but very good indeed

Not terrible , but not very good

veryNot terrible , but good [Mask]

Source:

Transferred:

Step 1. Alignment Prediction

Aligned:

(c) NAST (Ours)

Two Step Decomposition

Step 2. Non-autoregressive Generation

61 2 3 4 7 0

51 2 3 4 6 7

Figure 1: Sentiment transfer examples (negative to pos-
itive). (a) Existing models without word alignments
may generate words irrelevant to the source sen-
tence. (b) An example of word alignments between the
source and target sentences. Arrows connect aligned
words (identical or relevant), and blue words are not
aligned. (c) NAST’s generation process. Step 1: gener-
ate the index of aligned words. [Mask] is a placeholder
for unaligned words. Step 2: generate the transferred
sentence non-autoregressively.

2019), has been widely adopted by unsupervised
text style transfer models (Dai et al., 2019; He et al.,
2020; Yi et al., 2020). Specifically, the cycle loss
minimizes the reconstruction error for the sentence
transferred from styleX to style Y and then back to
X , which aligns the sentences in two stylistic text
spaces to achieve the transfer and preserve style-
irrelevant contents. The cycle-loss-based models
are trained in an end-to-end fashion, and thus can
be easily applied to different datasets.

Although cycle-loss-based models yield promis-
ing results, one of their major failure cases is to
replace some part of the source sentence with irrel-
evant words that have strong styles, as shown in Fig
1(a). This problem degrades content preservation
and can be alleviated from two perspectives. First,
we observe that most words in the human-written

https://github.com/thu-coai/NAST

1578

transferred sentence can be aligned with those in
the source sentence. As shown in Fig 1(b), we can
align “Not” with “Not”, “terrible” with “perfect”,
and leave only a few words unaligned. It shows
that humans regard the alignments between words
as a key aspect of content preservation, but they are
not explicitly modeled by cycle-loss-based models
yet. Second, existing models use the cycle loss to
align sentences in two stylistic text spaces, which
lacks control at the word level. For example, in
sentiment transfer, “tasty” should be mapped to
“awful” (because they both depict food tastes) but
not “expensive”. We utilize a non-autoregressive
generator to model the word-level transfer, where
the transferred words are predicted based on con-
textual representations of the aligned source words.

In this paper, we propose a Non-Autoregressive
generator for unsupervised Style Transfer (NAST),
which explicitly models word alignment for better
content preservation. Specifically, our generation
process is decomposed into two steps: first pre-
dicting word alignments conditioned on the source
sentence, and then generating the transferred sen-
tence with a non-autoregressive (NAR) decoder.
Modeling word alignments directly suppresses the
generation of irrelevant words, and the NAR de-
coder exploits the word-level transfer. NAST can
be used to replace the autoregressive generators
of existing cycle-loss-based models. In the exper-
iments, we integrate NAST into two base mod-
els: StyTrans (Dai et al., 2019) and LatentSeq (He
et al., 2020). Results on two benchmark datasets
show that NAST steadily improves the overall per-
formance. Compared with autoregressive models,
NAST greatly accelerates training and inference
and provides better optimization of the cycle loss.
Moreover, we observe that NAST learns explain-
able word alignments. Our contributions are:

• We propose NAST, a Non-Autoregressive gen-
erator for unsupervised text Style Transfer. By
explicitly modeling word alignments, NAST sup-
presses irrelevant words and improves content
preservation for the cycle-loss-based models. To
the best of our knowledge, we are the first to
introduce a non-autoregressive generator to an
unsupervised generation task.

• Experiments show that incorporating NAST in
cycle-loss-based models significantly improves
the overall performance and the speed of training
and inference. In further analysis, we find that
NAST provides better optimization of the cycle

loss and learns explainable word alignments.

2 Related Work

Unsupervised Text Style Transfer
We categorize style transfer models into three

types. The first type (Shen et al., 2017; Zhao et al.,
2018; Yang et al., 2018; John et al., 2019) disen-
tangles the style and content representations, and
then combines the content representations with the
target style to generate the transferred sentence.
However, the disentangled representations are lim-
ited in capacity and thus hardly scalable for long
sentences (Dai et al., 2019). The second type is
the editing-based method (Li et al., 2018; Wu et al.,
2019a,b), which edits the source sentence with sev-
eral discrete operations. The operations are usually
trained separately and then constitute a pipeline.
These methods are highly explainable, but they
usually need to locate and replace the stylist words,
which hardly applies to complex tasks that require
changes in sentence structures. Although our two-
step generation seems similar to a pipeline, NAST
is trained in an end-to-end fashion with the cycle
loss. All transferred words in NAST are gener-
ated, not copied, which is essentially different from
these methods. The third type is based on the cy-
cle loss. Zhang et al. (2018); Lample et al. (2019)
introduce the back translation method into style
transfer, where the model is directly trained with
the cycle loss after a proper initialization. The fol-
lowing works (Dai et al., 2019; Luo et al., 2019;
He et al., 2020; Yi et al., 2020) further adopt a style
loss to improve the style control.

A recent study (Zhou et al., 2020) explores the
word-level information for style transfer, which is
related to our motivation. However, they focus on
word-level style relevance in designing novel objec-
tives, while we focus on modeling word alignments
and the non-autoregressive architecture.

Non-Autoregressive Generation
Non-AutoRegressive (NAR) generation is first

introduced in machine translation for parallel de-
coding with low latency (Gu et al., 2018). The
NAR generator assumes that each token is gener-
ated independently of each other conditioned on
the input sentence, which sacrifices the generation
quality in exchange for the inference speed.

Most works on NAR generation focus on im-
proving the generation quality while preserving the
speed acceleration in machine translation. Gu et al.
(2018) find the decoder input is critical to the gener-

1579

① Simple Alignment

Source Sentence: so far I am not impressed

Alignment:

Aligned Sentence: so far I am not impressed

Transferred Sentence: so far I am very impressed

Source Sentence: worst food and will never come back

Alignment:

Aligned Sentence: worst [Mask] food and will come back

Transferred Sentence: most delicious food and will come back

② Learnable Alignment

���
���

… ���

Transformer Decoder

��…����

Transformer Encoder

Non-Differentiable
Approximated Gradients

Differentiable

Source Sentence Aligned Sentence

Transferred Sentence

(a) (b)

� = [��, ��, ⋯ , ��]
Predicted Alignment 1, 2, 3, 4, 5, 6� = []

1, 2, 3, 4, 6, 7� = []0,

�� �� … ��

� � … � � � … �

Figure 2: (a) Architecture of NAST transferring X to Y . SY is the target style. The NAR decoder generates each
word yi independently. (b) Examples of two alignment prediction strategies. Simple Alignment: each yi is aligned
with xi. Learnable Alignment: a network predicts the alignment, where tk = 0 indicates a [Mask] placeholder.

ation quality. Several works (Bao et al., 2019; Ran
et al., 2019) improve the decoder input by aligning
source words with target words, which utilize a
two-step generation process and inspire the design
of NAST. To our knowledge, only a few works of
NAR generation explore applications other than
machine translation (Han et al., 2020; Peng et al.,
2020). We are the first to apply NAR generators to
an unsupervised text generation task, which surpris-
ingly outperforms autoregressive models in transfer
quality besides the acceleration.

3 Methods

In this paper, we formulate the unsupervised text
style transfer as follows: for two non-parallel cor-
pora with stylesX andY respectively, the task aims
at training a style transfer model G. The model
learns the transfer of two directions, X → Y and
Y → X , which can be denoted as PGY (Y |X) and
PGX (X|Y), respectively.

3.1 NAST

NAST is a non-autoregressive generator based on
the observation of the word alignment: in style
transfer tasks, most generated words can be aligned
with the source words, where each pair of the
aligned words is either identical or highly rele-
vant. For simplicity, we only describe GY , where
GX shares the architecture and parameters ex-
cept style embeddings. Given the source sentence
X = [x1, x2, · · · , xN], the generation process of
NAST is decomposed into two steps: predicting the
alignment T = [t1, t2, · · · , tM], and then generat-
ing the transferred sentence Y = [y1, y2, · · · , yM].
When 1 ≤ ti ≤ N , the generated word yi is aligned
with the source word xti . Otherwise, yi is not
aligned with any source word, where we set ti to
0 and fill xti with a [Mask] placeholder. Formally,

we regard T as a latent variable, and the generation
probability is formulated as

PGY (Y |X) =
∑
T

PGY (Y |X,T)PGY (T |X), (1)

where PGY (T |X) and PGY (Y |X,T) are modeled
by an alignment predictor and a non-autoregressive
decoder, respectively, as shown in Fig 2.

3.1.1 Alignment Predictor
The alignment predictor predicts the target length
M and the alignment T conditioned on the source
sentence X . We utilize a Transformer (Vaswani
et al., 2017) to encode the source sentence and then
explore two alternative strategies to predict T .
Simple Alignment. Simple Alignment assumes
that the source and target sentences have the same
length, and each generated word yi is exactly
aligned with the source word xi. Formally,

PGY (T |X) = I[M = N]

M∏
i=1

I[ti = i],

where I[·] is the indicator function. A similar strat-
egy has been adopted by editing-based methods
(Wu et al., 2019b; Helbig et al., 2020), where they
simply replace several words in the source sentence.
Although this strategy cannot alter the sentence
length, it empirically works well on simple tasks,
such as sentiment transfer.
Learnable Alignment. Inspired by Ran et al.
(2019); Bao et al. (2019), we utilize a pointer net-
work (Vinyals et al., 2015) on top of the encoder,
which predicts the alignment T :

PGY (T |X) =

M∏
i=1

PGY (ti|X, t<i).

The pointer network is essentially an autoregressive
generator, but it only generates the alignment ti
pointing to a source word.

1580

3.1.2 Non-autoregressive Decoder
The non-autoregressive decoder (Gu et al., 2018)
is a Transformer that generates each word indepen-
dently. Formally, we have

PGY (Y |X,T) =

M∏
i=1

PGY (yi|X,T). (2)

The Transformer decoder takes the aligned sen-
tence [xt1 , xt2 , · · · , xtM] and the target style em-
bedding SY as inputs. It also contains attention
connections from the Transformer encoder.

3.1.3 Training
NAST is a generator that can be integrated into
existing cycle-loss-based models. These models
mainly utilize three losses, and the overall ob-
jective L is defined as αLself + βLsty + γLcyc,
where α, β, γ are hyper-parameters. The self-
reconstruction loss Lself aims at recovering sen-
tences of both styles from their corrupted versions:

Lself = −EX∼PX

[
logPGX (X|X̃)

]
−

EY∼PY

[
logPGY (Y |Ỹ)

]
, (3)

where X̃ and Ỹ are constructed by word dropout,
insertion, and masking (Lample et al., 2019), and
PX and PY are the data distributions of two styles.
The style loss Lsty is used to guide the style of
generated sentences, which has various designs by
existing works, e.g., adopting a style discriminator
(Dai et al., 2019) or a language model (He et al.,
2020). In our implementation, the style loss is
determined by the base model. We simply present
a general formulation:

Lsty = −EX∼PX [F (GY(X),Y)]−
EY∼PY [F (GX (Y),X)] , (4)

where F (X,X) indicates a score that shows to
which extent the sentence X has the style X , and
GY(X) is the generated sentence sampled from
PGY (Y |X) in two steps: TY(X) ∼ PGY (T |X),
GY(X) ∼ PGY (Y |X,TY(X)). At last, the cycle
loss Lcyc is formulated as

Lcyc = −EX∼PX [logPGX (X|GY(X))]−
EY∼PY

[
logPGY (Y |GX (Y))

]
. (5)

However, there still exist two obstacles in opti-
mization. Firstly, because of the non-differentiable
problem, we cannot back-propagate the gradients
through the discrete text GY(X) in Eq.(4)(5). As
a common workaround, we adopt the Gumbel-
Softmax trick (Jang et al., 2017) to approximate the

gradients. Therefore, the gradients from GY(X)
can be back-propagated through the decoder output
(Fig 2(a)). However, the alignment TY(X) is re-
mained discrete and non-differentiable, where we
simply stop the gradients1.

Secondly, the losses in Eq.(3)(5) are intractable
for NAST because the generation probability, e.g.
PGY (Y |X), is summed over all alignments as de-
fined in Eq.(1). We provide solutions for the two
alignment strategies separately.
For Simple Alignment. There is only one valid
alignment between X and Y , so the generation
probability is tractable as

logPGY (Y |X) = logPGY (Y |X,T ∗),
where T ∗ = arg max

T
PGY (T |X) = [1, 2, . . . , N].

For Learnable Alignment. Inspired by Bao et al.
(2019), we introduce a heuristic rule to obtain a
pseudo alignment T ∗:

T ∗ = arg max
T

M∑
i=1

cos(e(yi), e(xti))

s.t. ti = 0 or ti > tj for ∀ 1 ≤ j < i ≤M,

where e(·) indicates the word embeddings. We can
obtain the pseudo alignment by dynamic program-
ming, and the details are presented in Appendix
A. In the pseudo alignment, most words in Y are
aligned with identical or highly relevant words in
X , which can be used as a good label to supervise
our model. Next, we derive a tractable lower bound
for the generation probability:

logPGY (Y |X) ≥ logPGY (Y |X,T ∗) + logPGY (T ∗|X).
(6)

On the right side, the first term trains the NAR
decoder, and the second term trains the alignment
predictor. By substituting Eq.(6) into Eq.(3)(5), we
turn to optimize the upper bounds instead of the
original intractable losses. The detailed training
algorithm is shown in Appendix A.

3.2 Discussions
Residual Connections and Multi-head Atten-
tion. The aligned words in NAST are directly con-
nected with the residual connections, and these con-
nections form several chains in the cycle loss opti-
mization, as shown in Fig 3. Most of these chains
represent the word-level transfers and reconstruc-
tions, e.g., “terrible” is transferred to “perfect” and

1As a result, the alignment predictor (for Learnable Align-
ment) is not optimized following the gradients from GY(X),
but with a pseudo label introduced later.

1581

Not perfect , but very good indeed

Not terrible , but not very good

veryNot terrible , but good [Mask]

Not perfect , but [Mask] very good

Not terrible , but not very good

�:

�:

�:

Cycle
Loss

Step1

Step2

Step1

Step2

Figure 3: Connections of NAST in the cycle loss with
the encoder omitted. The word alignments (step 1) and
the residual connections (step 2) are in black.

then reconstructs “terrible”. The reconstruction er-
ror is a part of the cycle loss, which is optimized to
enhance the alignment in the word space. Besides
the residual connections, the multi-head attention
mechanism is also important for our model. The
attention stops NAST from becoming a degenerate
word-to-word dictionary and makes it possible to
predict the unaligned words from the context.
Exposure Bias in Autoregressive (AR) Models.
Exposure bias (Bengio et al., 2015) is a notori-
ous problem in the AR generation. To obtain
PGX (X|GY(X)) in the cycle loss, AR generators
predict each word of X based on the ground-truth
prefix, which is an easy task even without infor-
mation from GY(X). As a result, in inference, the
model may fail in preserving the sentence mean-
ing as it is trained to focus on its generated prefix.
In contrast, NAST focuses on the source sentence
since the ground-truth prefix is not given, which
suppresses the problem of generating irrelevant
words and improves content preservation. More-
over, the training and test are consistent in NAST2,
which alleviates the exposure bias problem.

4 Experiments

4.1 Experiment Settings
We conduct experiments on two style transfer tasks.

Sentiment Transfer. We use the YELP dataset (Li
et al., 2018), which consists of two non-parallel
corpora with positive and negative sentiments. For
each sentence in the test set, multiple human refer-
ences are provided by Luo et al. (2019).
Text Formalization. We use the family and rela-
tionship domain of the GYAFC dataset (Rao and
Tetreault, 2018), which consists of paired corpora
for formal and informal sentences. We do not use
the paired data to supervise training.

2The claim only applies to NAST with Simple Alignment,
because the pseudo alignment used in Learnable Alignment
breaks the consistency.

We utilize several SOTA models as baselines,
which include CrossAlign (Shen et al., 2017), Del-
Retrie (Li et al., 2018), Disent (John et al., 2019),
StyIns (Yi et al., 2020), StyTrans (Dai et al., 2019),
and LatentSeq (He et al., 2020). Our models are
modified based on StyTrans and LatentSeq, where
we replace their generators with NAST. For Sty-
Trans, NAST adopts a Transformer of the same ar-
chitecture as the original implementation. However,
LatentSeq utilizes an LSTM generator. For a fair
comparison, we first incorporate LatentSeq with
a vanilla Transformer generator and then replace
the generator with NAST of the same architecture.
In inference, we use the greedy decoding strategy,
i.e., we choose the top-1 candidate at each step
in alignment prediction and sentence generation.
More details are presented in Appendix B.

4.2 Automatic Evaluation

Following Luo et al. (2019); Dai et al. (2019), we
utilize a pretrained classifier to evaluate the style
accuracy (Acc), and adopt the BLEU-4 score com-
paring generated sentences with the source sen-
tences (SelfB) or with the references (RefB) to
evaluate content preservation. The classifier based
on RoBERTa-base (Liu et al., 2019) achieves an ac-
curacy of 97.6% and 90.1% on YELP and GYAFC,
respectively. For each transfer direction, we calcu-
late the geometric and harmonic mean of Acc and
RefB and then report the average on two directions
as G2 and H2, respectively. We further report the
perplexity (PPL) of transferred sentences, which
is evaluated by GPT2-base (Radford et al., 2019)
fine-tuned on the training set.

The results are shown in Table 1. Compared
with StyTrans and LatentSeq, NAST exhibits stable
performance gains of G2 and H2 on both datasets.
On the Yelp dataset, NAST remarkably improves
content preservation (at least 6 points with RefB)
but suffers a slight decline in Acc. We find that
NAST can suppress irrelevant words with strong
styles, which possibly leads to the decline in Acc.
On the GYAFC dataset, NAST outperforms the
base models mainly in Acc instead of RefB, which
is affected by model selection strategies with the
Acc-RefB trade-off. In Table 1, we choose the
best model based on G2. A more comprehensive
comparisons with trade-off curves will be discussed
in the next section.

In terms of the alignment strategies, Learn-
able Alignment outperforms Simple Alignment on

1582

Yelp GYAFC
Model PPL Acc SelfB RefB G2 H2 PPL Acc SelfB RefB G2 H2
CrossAlign (Shen et al., 2017) 105 74.0 20.3 17.9 31.8 28.8 47 63.8 2.3 3.2 14.1 6.1
DelRetrie (Li et al., 2018) 94 88.7 36.8 31.1 52.5 46.0 101 58.2 32.3 20.8 34.2 29.8
Disent (John et al., 2019) 27 92.2 8.3 13.8 35.6 24.0 27 68.4 4.8 8.0 23.4 14.4
DualRL (Luo et al., 2019) 73 88.6 59.0 55.2 68.6 67.0 91 58.9 50.1 40.3 43.9 39.2
StyIns (Yi et al., 2020) 98 91.5 53.2 49.0 66.9 63.7 72 65.6 62.6 45.5 52.6 50.0
StyTrans (Dai et al., 2019) 136 90.4 53.3 48.6 66.2 63.1 124 67.1 59.7 41.9 50.4 46.8
+ NAST (Simple) 117 88.9 63.3** 55.9** 70.4** 68.5** 130 67.6 63.7* 41.6 50.8 47.4
+ NAST (Learnable) 112* 87.4 62.0** 54.6** 69.0** 67.1** 119 72.9* 61.6 42.8 53.6** 49.9**
LatentSeq (He et al., 2020) 55 84.5 49.4 47.3 62.6 60.5 47 55.3 57.8 38.5 44.1 42.5
LatentSeq w/ Transformer 42 84.6 48.8 47.1 63.0 60.4 38 58.1 54.3 35.3 45.1 43.5
+ NAST (Simple) 73 81.2 65.2** 57.6** 68.1** 66.9** 56 60.4* 57.0 38.2 47.4* 45.6*
+ NAST (Learnable) 70 79.6 65.5** 58.0** 67.7** 66.7** 53 64.1** 57.0 39.2 49.0** 46.6*

Table 1: Automatic evaluation results. Simple and Learnable indicate two alignment strategies. All values are
averaged on two transfer directions. Bold denotes the best results for each base model, and underline denotes the
best results in all models. * and ** indicate significant improvements over StyTrans or LatentSeq (p < 0.05 and
p < 0.01 in t-test).

Figure 4: Trade-off curves between style control (Acc)
and content preservation (RefB). (a)(c) use StyTrans as
the base model, (b)(d) use LatentSeq as the base model.
Each curve contains points from three runs with differ-
ent style loss coefficients β, whose values for NAST
are presented under sub-figures.

GYAFC, but there is no significant difference on
Yelp. We suppose that the sentiment transfer task
is more straightforward than the text formaliza-
tion, where the model can achieve a good transfer
performance on Yelp without changing sentence
structures.

Compared with all baselines, our best models
set new SOTA results on two datasets in the overall
performance of the transfer accuracy and content
preservation (i.e., G2 and H2).

Trade-Off Curves. To investigate the trade-off
between style control (shown by Acc) and con-
tent preservation (shown by RefB), we follow Fu
et al. (2018) and evaluate the models with differ-
ent hyper-parameters. To be specific, we select
three different style loss coefficients β around the
best value. Please see Appendix B.2 for the search
range and other details. Since the trade-off varies
through the training, we evaluate the models and
collect data points at every epoch. It is different

#Param Train (ms) Inference (ms)
StyTrans 31.1M 857 (1.0x) 249 (1.0x)
+ NAST (Simple) 31.1M 201 (4.3x) 8 (31.1x)
+ NAST (Learnable) 32.4M 339 (2.5x) 71 (3.5x)
LatentSeq w/ Trans. 21.2M 1282 (1.0x) 266 (1.0x)
+ NAST (Simple) 21.2M 714 (1.8x) 23 (11.6x)
+ NAST (Learnable) 22.4M 761 (1.7x) 125 (2.1x)

Table 2: Parameter size and the training and inference
latency on GYAFC. The speedup of training LatentSeq
is less significant, because the bottleneck is a language
model used in the style loss, costing about 487ms.

from Fu et al. (2018), who only plot the metrics of
the best model in each run. The curves are shown
in Fig 4, where we only keep the outermost points
of each model and remove the points dominated by
at least one other point in both Acc and RefB.

The curves of NAST are generally above those
of the base models, indicating that NAST achieves
better content preservation when the style accuracy
is kept at a similar level. In Fig 4 (c)(d), we find
that the base model’s RefB drops rapidly after Acc
exceeds a certain value, which indicates that the
cycle loss fails to preserve the sentence-level align-
ment, thereby leading to model collapse. By con-
trast, NAST largely alleviates the issue of model
collapse. Moreover, we find that Learnable Align-
ment outperforms Simple Alignment on GYAFC,
but performs equally or slightly worse on Yelp, due
to the task differences discussed above.
Training & Inference Speed. Thanks to the par-
allel decoding of the NAR generator, NAST accel-
erates the model training and inference as shown
in Table 2. For a fair comparison, NAST and the
corresponding base model utilize the same Trans-
former architecture. The computation devices are
detailed in Appendix B.3.

4.3 Human Evaluation

We follow Li et al. (2018) and conduct human eval-
uation experiments on the Yelp dataset. In addition
to NAST and the base models, we choose three

1583

Model Fluency Style Content
DelRetrie 3.87 3.90 3.05
DualRL 4.38 4.25 4.24
StyIns 4.25 4.00 4.11
StyTrans 4.24 3.91 4.16
+ NAST(Simple) 4.34 3.87 4.41**
+ NAST(Learnable) 4.39* 3.87 4.38**
LatentSeq 4.53 3.92 3.59
+ NAST(Simple) 4.41 3.93 4.43**
+ NAST(Learnable) 4.57 3.82 4.48**

Table 3: Human evaluation results. Bold denotes the
best results for each base model and underline denotes
the best results among all models. * and ** indicate sig-
nificant improvements over the base model (p < 0.05
and p < 0.01 in t-test). The Krippen-dorff’s alpha
of human rating is 0.72, indicating acceptable inter-
annotator agreement.

Yelp GYAFC
Model Acc RefB G2 Acc RefB G2
LatentSeq(Trans.) 84.6 47.1 63.0 58.1 35.3 45.1
NAST(Simple) 81.3 57.4 68.1 58.3 39.3 47.5
w/o Aligned Sent. 73.2 44.1 56.8 54.1 34.4 42.8
w/o Multi-head Attn. 57.0 62.8 59.6 22.0 41.1 29.7
w/ Soft-Embedding 44.3 44.6 43.6 63.4 26.0 40.3
w/ Stop-Gradient 80.5 50.1 63.5 64.2 26.3 40.6

Table 4: Ablation study of NAR decoder and gradient
approximation methods. The base model is LatentSeq.

baselines with the highest G2. For each model, we
sample 100 sentences (50 in each transfer direc-
tion), and 900 sentences are evaluated in total. For
each sentence, three annotators are asked to rate
from 1 (worst) to 5 (best) for fluency, style control,
and content preservation.

The human evaluation results are shown in Ta-
ble 3. Similar to the automatic evaluation results,
NAST improves content preservation significantly.
Moreover, we find that Learnable Alignment out-
performs Simple Alignment in terms of fluency. It
can be partially attributed to the fact that Learnable
Alignment, which is able to remove or add words,
is more flexible in generation.

4.4 Ablation Study

NAR decoder. Although NAST with Simple
Alignment has a simple, straightforward design, it
works surprisingly well compared with an AR gen-
erator. We conduct an ablation study to investigate
the impact of different components in the NAR
decoder. First, we remove the aligned sentence
from the decoder input. Specifically, the decoder
input is the positional encodings without the word
embeddings. Second, we remove the multi-head
attention in the decoder, and thus each output word
is solely conditioned on its aligned word.

The results are shown in Table 4. After we re-

Pseudo Alignment in Self-Reconstruction Loss
S: that [Mask] talk , if are not happy like but you .
P: that [Mask] , if [Mask] are not happy but you [Mask] .
T: that is , if others are not happy but you are .

Pseudo Alignment in Cycle Loss
S: i leave your email on exercise , and see what happens .
P: i leave your email [Mask] on [Mask] , and see what happens .
T: just leave your email loged on accidentally ... and see what happens !

Table 5: Pseudo alignments on GYAFC. S = source, P =
pseudo alignment, T = target. Unaligned source words,
unaligned target words, and non-identical aligned
words are marked in different colors.

move the aligned sentence, the performance drops
but still remains comparable. It shows that the
multi-head attention over the source sentence learns
reasonable transfer, while the performance can be
largely improved by providing the decoder with
the aligned sentence as input. After we remove
the multi-head attention, the overall performance
drops remarkably, especially on GYAFC. It shows
that NAST utilizes multi-head attention to gather
sentence-level information, and it is essentially not
a word-to-word dictionary. Moreover, the contribu-
tion of the multi-head attention is larger on GYAFC
than on Yelp. It further justifies that text formaliza-
tion is less straightforward than sentiment transfer
since it requires more sentence-level modifications.
Gradient Approximation Methods. The choice
of gradient approximation methods is important
for tackling the non-differentiable problem. Be-
sides the Gumbel-Softmax trick used in our full
model, we try two alternative methods. 1) The
Soft-Embedding approximation (Dai et al., 2019)
multiplies the softmax distribution by the word em-
bedding matrix to get “soft” word embeddings. 2)
The Stop-Gradient strategy (He et al., 2020) stops
the gradient at the decoder output in the cycle loss.
However, the style loss requires the output to be dif-
ferentiable, so we still apply the Gumbel-Softmax
trick for the style loss. Results in Table 4 show that
the Gumbel-softmax trick outperforms the other
methods, so we utilize the Gumbel-Softmax trick
for NAST in other experiments.
Learnable Alignment. According to Eq.(3)(5)(6),
the alignment predictor in Learnable Alignment is
supervised by pseudo alignments when optimizing
the upper bounds of the self-reconstruction loss and
the cycle loss. For the former, the alignment predic-
tor learns to align the corrupted X̃ with X . For the
latter, the alignment predictor learns to align the
transferred sentence GY(X) with the original X .
We show two cases in Table 5, where the pseudo
alignments are of acceptable quality.

To investigate the effects of the pseudo align-

1584

Model Acc RefB G2 |∆| std(∆)
NAST(Simple) 66.5 41.6 50.4 0.00 0.00
NAST(Learnable) 73.0 43.5 54.2 0.80 1.26

w/o Pseudo(Recon) 66.1 41.5 50.3 0.02 0.28
w/o Pseudo(Cyc) 68.5 42.5 52.7 0.96 0.47

Table 6: Ablation study of NAST with Learnable Align-
ment on GYAFC. ∆ is the length difference before and
after the transfer. |∆| and std(∆) indicate the average
absolute value and the standard deviation, respectively.
All models use StyTrans as the base model.

Yelp (Positive to Negative)
Source love this place and will keep coming back .
LatentSeq do n’t waste your time and wo n’t be back .
StyTrans avoid this place and will keep coming back .
NAST(Simp.) skip this place and will never coming back .
NAST(Lear.) hate this place and will not be coming back .

Yelp (Negative to Positive)
Source: i did n’t even eat it .
LatentSeq: i always love their food and service .
StyTrans: i love the food eat it .
NAST(Simp.): i love it and eat it .
NAST(Lear.): i definitely love [DEL] to eat it .

GYAFC (Formal to Informal)
Source the world would be happier if men knew what women want .
LatentSeq the guy would be mad if they want what women want .
StyTrans the world would be what if thing what girls want girl ur girl want .
NAST(Simp.) and world ’ll be happier if men knew what women want .
NAST(Lear.) just world would be happier ... if guys knew what women want [Del]

GYAFC (Informal to Formal)
Source: i do n’t know ! ... i just want the points ... lol
LatentSeq: i do not know . i just want the points . however , i am not a good one .
StyTrans: i do not know !
NAST(Simp.): i do not know ! . i just want the points . .
NAST(Lear.): i do not know ! [Del] i just want the points . [Del]

Table 7: Transfer cases. Red words indicate irrelevant
phrases or failed transfer in style. Non-trivial align-
ments and non-identical aligned words are marked in
colors. [Del] indicates the source word is unaligned.

ments supervision, we remove logPGY (T ∗|X) in
Eq.(6) for the two losses separately. Results are
shown in Table 6. Without the pseudo align-
ments supervision in the self-reconstruction loss,
the model almost degenerates into Simple Align-
ment, because keeping the length unchanged is the
easiest way to minimize the cycle loss. Without
the pseudo supervision in the cycle loss, Learnable
Alignment is slightly weaker than the full model
but still outperforms Simple Alignment.

4.5 Case Study of Word Alignment

We present several transfer cases in Table 7. We ob-
serve that a major failure mode of the base models
is generating irrelevant words. We also observe that
NAST achieves better content preservation, and
most words in NAST’s prediction can be aligned
with the source words. Focused on the alignment
strategies, we observe that the outputs of NAST
with Simple Alignment sometimes contain gram-
mar errors (e.g., “will never coming back”), which
can be attributed to its limitation of not changing
the sentence length. In contrast, we observe that
Learnable Alignment can add and remove words at
appropriate positions.

NAST(Simple) on Yelp (Negative to Positive)
Src Word Transferred Words
helpful weird (100%)
fresh tasteless (61.5%) overcooked (38.5%)
definitely not (92.9%) never (7.1%)
nice rude (52.9%) no (47.1%)
best worst (96.8%) money (3.2%)
delicious bland (82.6%) ok (13.0%) frozen (4.4%)
love hate (63.6%) ordered (18.2%) skip (13.6%) avoid (4.6%)

NAST(Learnable) on GYAFC (Informal to Formal)
Src Word Transferred Words
’m am (100%)
n’t not (98.5%) n’t (1.5%)
guy man (98.4%) guy (1.6%)
u you (89.2%) [Del] (10.8%)
lol . (41.7%) [Del] (41.7%) although (16.7%)
... [Del] (31.3%) , (27.4%) . (26.3%) and other 7 words
mean believe (50.0%) mean (20.8%) am (20.8%) and other 2 words
[Mask] . (55.2%) a (12.0%) ? (4.8%) and other 28 words

Table 8: Cases of aligned word pairs generated by
NAST. [Del] and [Mask] indicate an unaligned source
word or an unaligned transferred word, respectively.
Reasonable transfers are in blue.

To understand the learned word alignments and
the word-level transfer, we count the aligned word
pairs based on the prediction of Learnable Align-
ment. Several cases are presented in Table 8. We
observe the aligned word pairs are highly explain-
able. For example, NAST maps “delicious” to
“bland” in sentiment transfer and maps “guy” to
“man” in text formalization. These cases show
that the model can learn fine-grained word-level
transfer, where “delicious” and “bland” both depict
food taste with different styles. Moreover, NAST
with Learnable Alignment learns to add or remove
words at reasonable positions, such as adding miss-
ing punctuation marks (“.”, “?”) and removing
redundant words (“...”, “lol”) in text formalization.

4.6 Analysis of Cycle Loss Optimization
The cycle loss plays a key role in unsupervised style
transfer, which achieves style control and content
preservation by aligning the sentences in two text
spaces. However, the optimization is not straight-
forward due to the non-differentiable problem. In
this section, we study how the cycle loss optimiza-
tion is affected by the generator architecture and
compare a NAR generator with an AR generator3.
To remove the interference of other losses, we train
the model solely with the cycle loss and report the
BLEU-4 score of the cycle reconstruction.

The results are shown in Table 9. The NAR
generator remarkably outperforms the AR genera-
tor with all gradient approximation methods. We
provide two possible explanations for this observa-
tion. One reason is that word alignments can help
the cycle loss align the text spaces. As discussed

3For a fair comparison, the target sentence length is pro-
vided to both models, where the AR generator does not need
to predict the EOS token.

1585

Gumbel-Softmax Stop-Gradient Soft-Embedding
NAR 94.4±0.4 67.6±4.2 33.6±13.8
AR 84.9±1.1 23.5±1.1 29.9±15.1

Table 9: BLEU-4 of the cycle reconstruction on the
Yelp dataset. The values are reported with mean and
standard deviation of three runs with different seeds.

in Sec 3.2, the residual connections directly con-
nect aligned words, which exploits the word-level
transfer and reconstruction. Compared with the
AR generator that aligns the text spaces at the sen-
tence level, aligning word pairs can be much easier.
Another possible reason is the error accumulation
caused by the gradient approximation methods. In
each step of the AR generation, the gradient ap-
proximation methods are applied to the generated
word, and the word is then fed into the model as
the next input. As a result, gradients will be ap-
proximated multiple times in the back-propagation,
and the error brought by the approximation may
be accumulated and possibly lead to unstable opti-
mization.

Our analysis provides a perspective to under-
stand how NAST works, and reveals that the gener-
ator architecture can deeply affect the optimization
in the non-differentiable problem. However, we
should be cautious when generalizing the results to
other settings. We notice inconsistent performance
report for the gradient approximation methods (Dai
et al., 2019; Tu et al., 2020; He et al., 2020), where
the phenomenon needs further study.

5 Conclusion

In this paper, we propose NAST, a Non-Autoregre-
ssive generator for unsupervised text Style Transfer.
It explicitly models word alignments to suppress ir-
relevant words and exploits the word-level transfer
between different styles. Experiments show that
NAST improves the overall performance, provides
explainable word alignments, and largely speed up
training and inference.

However, we should also notice a potential lim-
itation: NAST relies on the assumption that word
alignments exist between the source and target sen-
tences. In a more complicated task that lacks word
alignments, NAST may lose its advantage of ex-
ploiting the word-level transfer. In future work,
we will improve NAST to tackle noisy word align-
ments in more challenging datasets and build ex-
plainable and faster models for a broader range of
unsupervised text generation tasks.

Acknowledgments

This work was partly supported by the NSFC
projects (Key project with No. 61936010 and reg-
ular project with No. 61876096). This work was
also supported by the Guoqiang Institute of Ts-
inghua University, with Grant No. 2019GQG1 and
2020GQG0005.

References
Yu Bao, Hao Zhou, Jiangtao Feng, Mingxuan Wang,

Shujian Huang, Jiajun Chen, and Lei Li. 2019.
Non-autoregressive transformer by position learning.
CoRR, abs/1911.10677.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems 28: Annual Conference on Neural Informa-
tion Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 1171–1179.

Ning Dai, Jianze Liang, Xipeng Qiu, and Xuanjing
Huang. 2019. Style transformer: Unpaired text
style transfer without disentangled latent represen-
tation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 5997–6007, Florence, Italy. Association
for Computational Linguistics.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao,
and Rui Yan. 2018. Style transfer in text: Explo-
ration and evaluation. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 663–670. AAAI Press.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O. K. Li, and Richard Socher. 2018. Non-
autoregressive neural machine translation. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. Open-
Review.net.

Qinghong Han, Yuxian Meng, Fei Wu, and Jiwei Li.
2020. Non-autoregressive neural dialogue genera-
tion. CoRR, abs/2002.04250.

Junxian He, Xinyi Wang, Graham Neubig, and Tay-
lor Berg-Kirkpatrick. 2020. A probabilistic formu-
lation of unsupervised text style transfer. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

David Helbig, Enrica Troiano, and Roman Klinger.
2020. Challenges in emotion style transfer: An

http://arxiv.org/abs/1911.10677
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://doi.org/10.18653/v1/P19-1601
https://doi.org/10.18653/v1/P19-1601
https://doi.org/10.18653/v1/P19-1601
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
http://arxiv.org/abs/2002.04250
http://arxiv.org/abs/2002.04250
https://openreview.net/forum?id=HJlA0C4tPS
https://openreview.net/forum?id=HJlA0C4tPS
https://doi.org/10.18653/v1/2020.socialnlp-1.6

1586

exploration with a lexical substitution pipeline. In
Proceedings of the Eighth International Workshop
on Natural Language Processing for Social Media,
pages 41–50, Online. Association for Computational
Linguistics.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categor-
ical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Harsh Jhamtani, Varun Gangal, Eduard Hovy, and Eric
Nyberg. 2017. Shakespearizing modern language
using copy-enriched sequence to sequence models.
In Proceedings of the Workshop on Stylistic Varia-
tion, pages 10–19, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga
Vechtomova. 2019. Disentangled representation
learning for non-parallel text style transfer. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 424–434,
Florence, Italy. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2018. Unsupervised ma-
chine translation using monolingual corpora only.
In 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net.

Guillaume Lample, Sandeep Subramanian,
Eric Michael Smith, Ludovic Denoyer,
Marc’Aurelio Ranzato, and Y-Lan Boureau.
2019. Multiple-attribute text rewriting. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2020. On the variance of the adaptive learning rate
and beyond. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Fuli Luo, Peng Li, Jie Zhou, Pengcheng Yang, Baobao
Chang, Xu Sun, and Zhifang Sui. 2019. A dual rein-
forcement learning framework for unsupervised text
style transfer. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 5116–5122. ijcai.org.

Kainan Peng, Wei Ping, Zhao Song, and Kexin Zhao.
2020. Non-autoregressive neural text-to-speech. In
Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Ma-
chine Learning Research, pages 7586–7598. PMLR.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. 2019.
Guiding non-autoregressive neural machine transla-
tion decoding with reordering information. CoRR,
abs/1911.02215.

Sudha Rao and Joel Tetreault. 2018. Dear sir or
madam, may I introduce the GYAFC dataset: Cor-
pus, benchmarks and metrics for formality style
transfer. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 129–140,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi S.
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages
6830–6841.

Lifu Tu, Richard Yuanzhe Pang, Sam Wiseman, and
Kevin Gimpel. 2020. ENGINE: Energy-based infer-
ence networks for non-autoregressive machine trans-
lation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2819–2826, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

https://doi.org/10.18653/v1/2020.socialnlp-1.6
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.18653/v1/W17-4902
https://doi.org/10.18653/v1/W17-4902
https://doi.org/10.18653/v1/P19-1041
https://doi.org/10.18653/v1/P19-1041
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rkYTTf-AZ
https://openreview.net/forum?id=rkYTTf-AZ
https://openreview.net/forum?id=H1g2NhC5KQ
https://doi.org/10.18653/v1/N18-1169
https://doi.org/10.18653/v1/N18-1169
https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=rkgz2aEKDr
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.24963/ijcai.2019/711
https://doi.org/10.24963/ijcai.2019/711
https://doi.org/10.24963/ijcai.2019/711
http://proceedings.mlr.press/v119/peng20a.html
http://arxiv.org/abs/1911.02215
http://arxiv.org/abs/1911.02215
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/N18-1012
https://proceedings.neurips.cc/paper/2017/hash/2d2c8394e31101a261abf1784302bf75-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2d2c8394e31101a261abf1784302bf75-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.251
https://doi.org/10.18653/v1/2020.acl-main.251
https://doi.org/10.18653/v1/2020.acl-main.251
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

1587

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 2692–2700.

Chen Wu, Xuancheng Ren, Fuli Luo, and Xu Sun.
2019a. A hierarchical reinforced sequence opera-
tion method for unsupervised text style transfer. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4873–
4883, Florence, Italy. Association for Computational
Linguistics.

Xing Wu, Tao Zhang, Liangjun Zang, Jizhong Han,
and Songlin Hu. 2019b. Mask and infill: Apply-
ing masked language model for sentiment transfer.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, pages
5271–5277. ijcai.org.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P. Xing, and
Taylor Berg-Kirkpatrick. 2018. Unsupervised text
style transfer using language models as discrimina-
tors. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, De-
cember 3-8, 2018, Montréal, Canada, pages 7298–
7309.

Xiaoyuan Yi, Zhenghao Liu, Wenhao Li, and Maosong
Sun. 2020. Text style transfer via learning style in-
stance supported latent space. In Proceedings of the
Twenty-Ninth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2020, pages 3801–3807.
ijcai.org.

Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang,
Peng Chen, Mu Li, Ming Zhou, and Enhong Chen.
2018. Style transfer as unsupervised machine trans-
lation. CoRR, abs/1808.07894.

Junbo Jake Zhao, Yoon Kim, Kelly Zhang, Alexan-
der M. Rush, and Yann LeCun. 2018. Adversari-
ally regularized autoencoders. In Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pages 5897–5906. PMLR.

Chulun Zhou, Liangyu Chen, Jiachen Liu, Xinyan
Xiao, Jinsong Su, Sheng Guo, and Hua Wu. 2020.
Exploring contextual word-level style relevance for
unsupervised style transfer. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7135–7144, Online. As-
sociation for Computational Linguistics.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In
IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017,
pages 2242–2251. IEEE Computer Society.

Algorithm 1 DP Algorithm for Pseudo Alignment
DP (X,Y)

Require: Source sentence X = [x1, x2, · · · , xN] ,
Target sentence Y = [y1, y2, · · · , yM].

1: Initialize f(0, j) = 0 for ∀ j = 0, 1, · · · , N .
2: Initialize T (0, j) as empty lists for ∀ j = 0, 1, · · · , N .
3: Calculate the similarity matrix:

simi,j = cos(e(yi), e(xj)).
4: for i = 1, 2, · · · ,M do
5: for j = 0, 1, 2, · · · , N do
6: Calculate three choices of f(i, j):

c1 := f(i− 1, j)
c2 := f(i−1, j−1)+simi,j only valid if j > 0
c3 := f(i, j − 1) only valid if j > 0

7: if c1 is the maximum choice then
. yi is not aligned.

8: f(i, j) := c1, T (i, j) := T (i− 1, j)⊕ [0]
. ⊕ means list concatenation.

9: else if c2 is the maximum choice then
. yi is aligned with xj .

10: f(i, j) := c2, T (i, j) := T (i− 1, j − 1)⊕ [j]
11: else if c3 is the maximum choice then

. yi is aligned with xk, where k < j.
12: f(i, j) := c3, T (i, j) := T (i, j − 1)
13: end if
14: end for
15: end for
16: return DP (X,Y) := T (M,N)

A Optimization of NAST with Learnable
Alignment

Since the generation probability PGY (Y |X) is in-
tractable for NAST with Learnable Alignment,
we introduce a pseudo alignment T ∗. For X =
[x1, x2, · · · , xN] and Y = [y1, y2, · · · , yM], the
pseudo alignment T ∗ is defined by a heuristic rule:

T ∗ = arg max
T

V (X,Y)

=
M∑
i=1

cos(e(yi), e(xti))

s.t. ti = 0 or tj < ti ≤ N for ∀ 1 ≤ j < i ≤M,

where e(·) indicates the word embeddings. For
the unaligned target words, we set x0 to a [Mask]
placeholder, and set the cosine similarity between
the [Mask] placeholder and any other tokens to 0.

The pseudo alignments are obtained by dynamic
programming. We introduce a 2-dim array f(i, j)
indicating the maximum value of the objective
function V (X,Y) if Y = [y1, y2, · · · , yi] and
X = [x1, x2, · · · , xj]. We further introduce a list
T (i, j) that records the best alignment for f(i, j).
The algorithm is presented in Algorithm 1. The
time complexity is O(NMd), where the bottle-
neck is calculating the similarity matrix, and d is
the dimension of word embeddings.

Based on the pseudo alignments, we derive
tractable upper bounds of the losses, which are

https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://doi.org/10.18653/v1/P19-1482
https://doi.org/10.18653/v1/P19-1482
https://doi.org/10.24963/ijcai.2019/732
https://doi.org/10.24963/ijcai.2019/732
https://proceedings.neurips.cc/paper/2018/hash/398475c83b47075e8897a083e97eb9f0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/398475c83b47075e8897a083e97eb9f0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/398475c83b47075e8897a083e97eb9f0-Abstract.html
https://doi.org/10.24963/ijcai.2020/526
https://doi.org/10.24963/ijcai.2020/526
http://arxiv.org/abs/1808.07894
http://arxiv.org/abs/1808.07894
http://proceedings.mlr.press/v80/zhao18b.html
http://proceedings.mlr.press/v80/zhao18b.html
https://doi.org/10.18653/v1/2020.acl-main.639
https://doi.org/10.18653/v1/2020.acl-main.639
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244

1588

Algorithm 2 Training Algorithm for NAST with Learnable Alignment
Require: Non-parallel text distribution PX and PY . Max number of batches: max batch.
1: for iter = 1, 2, · · · ,max batch do
2: Sample X from PX , Y from PY .
3: Construct X̃ and Ỹ from X and Y .
4: Use Algorithm 1 to obtain pseudo alignments for the self-reconstruction loss:

T ∗X,self = DP (X̃,X), T ∗Y,self = DP (Ỹ , Y).

5: Calculate the upper bound of the self-reconstruction loss.
L̂self = − logPGX (X|X̃, T ∗X,self)− logPGX (T ∗X,self |X̃)

− logPGY (Y |Ỹ , T ∗Y,self)− logPGY (T ∗Y,self |Ỹ)

6: Generate transferred samples with gradient approximation methods:
TY ∼ PGY (T |X), GY(X) ∼ PGY (Y |X,TY).

TX ∼ PGX (T |Y), GX (Y) ∼ PGX (X|Y, TX).

7: Calculate the style loss.
Lsty = −EX∼PX [F (GY(X),Y)]− EY∼PY [F (GX (Y),X)] .

8: Use Algorithm 1 to obtain pseudo alignments for the cycle loss:
T ∗X,cyc = DP (GY(X), X), T ∗Y,cyc = DP (GX (Y), Y).

9: Calculate the upper bound of the cycle loss.
L̂cyc = − logPGX (X|GY(X), T ∗X,cyc)− logPGX (T ∗X,cyc|GY(X))

− logPGY (Y |GX (Y), T ∗Y,cyc)− logPGY (T ∗Y,cyc|GX (Y))

10: Update the model with the loss L = αL̂self + βLsty + γL̂cyc.
11: end for

Dataset Styles #Train #Valid #Test |V | Avg Len

Yelp Neg. 177k 2,000 500 9,943 9.55
Pos. 266k 2,000 500 8.43

GYAFC Inf. 52k 2,788 1,332 26,790 13.06
For. 52k 2,247 1,019 12.47

Table 10: Data statistics. Average length is calculated
on the training set.

then optimized to train the model. The full training
algorithm is presented in Algorithm 2.

B Experiment Settings

B.1 Dataset and Evaluation Metrics
We use the processed datasets provided by Luo
et al. (2019), which can be downloaded at https:
//github.com/luofuli/DualRL. The data statis-
tics are shown in Table 10.

The pretrained classifier is implemented based
on the transformers package4, and the BLEU-4
score is the corpus BLEU implemented in the nltk
package5. All results in our paper are evaluated
by our implemented codes. The reported results
of NAST, StyTrans, and LatentSeq in Figure 1 are
averaged over three runs with different random
seeds.

4https://github.com/huggingface/
transformers

5https://www.nltk.org/

B.2 Network Architecture and
Hyper-Parameters

NAST are implemented based on the base model,
StyTrans (Dai et al., 2019) and LatentSeq (He
et al., 2020). Their codes can be accessed at https:
//github.com/fastnlp/style-transformer

and https://github.com/cindyxinyiwang/

deep-latent-sequence-model.
For StyTrans, we follow their implementation

and hyper-parameters for the Transformer archi-
tecture. We use 4 Transformer layers, 4 atten-
tion heads, and 256-dim hidden cells for both the
encoder and the decoder. For the alignment pre-
dictor in Learnable Alignment, we utilize a one-
layer Transformer decoder with the same number
of attention head and dimension of hidden cells.
Moreover, StyTrans utilizes a discriminator for
the style loss, which is built on a 4-layer Trans-
former encoder with the same architecture above.
The discriminator and the generator are trained
adversarially. Following their implementation, in
each iteration, the discriminator is trained for 10
steps and then the generator is trained for 5 steps.
We utilize the Adam optimizer (Kingma and Ba,
2015) with the learning rate of 1e−4 and the batch
size of 64. We choose the gradient approxima-
tion method from the Gumbel-Softmax trick (Jang
et al., 2017), the Soft-Embedding approximation
(Dai et al., 2019), and the Stop-Gradient strategy

https://github.com/luofuli/DualRL
https://github.com/luofuli/DualRL
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://www.nltk.org/
https://github.com/fastnlp/style-transformer
https://github.com/fastnlp/style-transformer
https://github.com/cindyxinyiwang/deep-latent-sequence-model
https://github.com/cindyxinyiwang/deep-latent-sequence-model

1589

(He et al., 2020). We select the self-reconstruction
loss weight α from {0.25, 0.5, 1} and the cycle
loss weight γ from {0.25, 0.5, 1}. We find some-
times the transfer accuracy of one direction can
be much higher than that of the other direction, so
we separately tune the style loss weights for two
directions. To be specific, the overall objective is
defined as αLself + β1LX,sty + β2LY,sty + γLcyc,
where LX,sty = −EX∼PX [F (GY(X),Y)], and
LY,sty = −EY∼PY [F (GX (Y),X)]. We select β1,
β2 from {0.5, 1, 1.5, 3, 5, 10, 15}.

For LatentSeq, LSTM is adopted as the gener-
ator in their original models. We first replace the
LSTM with an autoregressive Transformer as a
baseline, which also has 4 Transformer layers, 4
attention heads, and 256-dim hidden cells. Then
we replace the autoregressive Transformer with
an non-autoregressive Transformer with the same
architecture. The alignment predictor is a one-
layer Transformer decoder with the same archi-
tecture above. However, LatentSeq utilizes a lan-
guage model for the style loss, which is a 512-
dim LSTM. We preserve the implementation of
the language model. For optimization, we uti-
lize the RAdam optimizer (Liu et al., 2020) with
the learning rate of 1e − 3 and the batch size of
64. We also try the three gradient approxima-
tion methods. We set the cycle-reconstruction loss
weight γ = 1. Following their original imple-
mentation, the self-reconstruction weight α is an-
nealed from 1 to 0 in the first 60k steps. Simi-
lar to NAST on StyleTrans, we tune the the style
loss weight on two directions separately, where we
select β1, β2 from {0.15, 0.3, 0.45, 0.6, 0.75} for
Yelp and {0.5, 0.75, 1, 1.25} for GYAFC.

We manually tune the hyper-parameters and se-
lect the best model according the performance on
the validation set. For the Yelp dataset, the vali-
dation set does not have reference answers, so we
use the geometric mean of Acc and SelfB as the
overall performance. For the GYAFC dataset, we
use the geometric mean of Acc and RefB as the
overall performance.

B.3 Computing Devices and Running Time

In our experiment, each run uses approximately 4
Intel Xeon Gold 6226R CPUs at 2.90GHz, and 1
Nvidia Quadro RTX 6000 GPU. We present the
max training step and the training time in Table 11.
The best results usually appear in the first half of
the training.

Model Yelp GYAFC
StyTrans

+ NAST(Simple) 135k steps (∼12h) 135k steps (∼16h)
+ NAST(Learnable) 135k steps (∼16h) 135k steps (∼25h)

LatentSeq
+ NAST(Simple) 150k steps (∼18h) 75k steps (∼16h)
+ NAST(Learnable) 150k steps (∼24h) 75k steps (∼18h)

Table 11: The max training step and the training time
of our models.

Yelp
Negative to Positive Positive to Negative

Model Acc RefB G2 Acc RefB G2
DualRL 85.4 49.6 65.1 85.8 60.8 72.3
StyTrans 87.5 45.4 63.0 93.1 51.6 69.3
+ NAST (Simple) 86.2 50.1 65.7 91.6 61.6 75.1
+ NAST (Learnable) 84.2 49.2 64.3 90.7 60.0 73.8
LatentSeq 82.3 42.8 59.3 86.7 51.8 67.0
+ NAST (Simple) 82.3 49.0 63.5 80.1 66.1 72.7
+ NAST (Learnable) 80.5 50.2 63.5 78.7 65.8 72.0

GYAFC
Formal to Informal Informal to Formal

Model Acc RefB G2 Acc RefB G2
DualRL 86.6 24.7 46.2 31.2 55.9 41.7
StyTrans 87.2 28.4 49.7 46.9 55.5 51.0
+ NAST (Simple) 85.4 28.5 49.3 49.8 54.7 52.2
+ NAST (Learnable) 92.1 29.9 52.5 53.7 55.7 54.7
LatentSeq 56.8 24.7 37.2 49.8 52.4 51.1
+ NAST (Simple) 62.5 27.4 41.4 58.3 49.0 53.4
+ NAST (Learnable) 69.1 25.8 42.1 59.2 52.6 55.8

Table 12: Automatic evaluation results on two transfer
directions.

C Transfer Difficulties

In Table 12, we present the results on two trans-
fer directions of Yelp and GYAFC. On the Yelp
dataset, transferring a negative sentence to a posi-
tive one is more difficult than the other direction.
One possible reason is that the negative sentences
are euphemistic and need changes in sentence struc-
tures when transferring to the positive sentiment. In
terms of G2, the text formalization is significantly
more difficult than the sentiment transfer. The dif-
ficulties of two transfer directions vary across mod-
els on GYAFC. Transferring formal sentences to
informal ones is harder for DualRL, while the other
direction is harder for LatentSeq.

D How to Count Aligned Word Pairs

In Section 4.5, we present cases of the word-level
transfer. The aligned word pairs are counted based
on the predict alignments T , following the rules
below:

• If 1 ≤ ti ≤ N , we record a pair xti → yi.
• If ti = 0, the transferred word is unaligned, and

we record a pair [Mask]→ yi.
• If a source word xi is not aligned with any trans-

ferred word, we record a pair xi → [Del].

We then collect all word pairs that have the same

1590

source word and calculate the proportion of differ-
ent transferred words. The results shown in Table
8 is obtained on the test set of two datasets.

