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Abstract

Scheduled sampling is an effective method to
alleviate the exposure bias problem of neu-
ral machine translation. It simulates the in-
ference scene by randomly replacing ground-
truth target input tokens with predicted ones
during training. Despite its success, its crit-
ical schedule strategies are merely based on
training steps, ignoring the real-time model
competence, which limits its potential perfor-
mance and convergence speed. To address
this issue, we propose confidence-aware sched-
uled sampling. Specifically, we quantify real-
time model competence by the confidence of
model predictions, based on which we design
fine-grained schedule strategies. In this way,
the model is exactly exposed to predicted to-
kens for high-confidence positions and still
ground-truth tokens for low-confidence posi-
tions. Moreover, we observe vanilla sched-
uled sampling suffers from degenerating into
the original teacher forcing mode since most
predicted tokens are the same as ground-truth
tokens. Therefore, under the above confidence-
aware strategy, we further expose more noisy
tokens (e.g., wordy and incorrect word order)
instead of predicted ones for high-confidence
token positions. We evaluate our approach
on the Transformer and conduct experiments
on large-scale WMT 2014 English-German,
WMT 2014 English-French, and WMT 2019
Chinese-English. Results show that our ap-
proach significantly outperforms the Trans-
former and vanilla scheduled sampling on both
translation quality and convergence speed.

1 Introduction

Neural Machine Translation (NMT) has made
promising progress in recent years (Sutskever et al.,
2014; Bahdanau et al., 2015; Vaswani et al., 2017).

∗ This work was done when Yijin Liu was interning at
Pattern Recognition Center, WeChat AI, Tencent Inc, China

† Jinan Xu is the corresponding author of the paper.

Generally, NMT models are trained to maximize
the likelihood of the next token given previous
golden tokens as inputs, i.e., teacher forcing (Good-
fellow et al., 2016). However, at the inference
stage, golden tokens are unavailable. The model is
exposed to an unseen data distribution generated
by itself. This discrepancy between training and
inference is named as the exposure bias problem
(Ranzato et al., 2016).

Many techniques have been proposed to allevi-
ate the exposure bias problem. To our knowledge,
they mainly fall into two categories. The one is
sentence-level training, which treats the sentence-
level metric (e.g., BLEU) as a reward, and directly
maximizes the expected rewards of generated se-
quences (Ranzato et al., 2016; Shen et al., 2016;
Rennie et al., 2017). Although intuitive, they gen-
erally suffer from slow and unstable training due to
the high variance of policy gradients and the credit
assignment problem (Sutton, 1984; Liu et al., 2018;
Wang et al., 2018). Another category is sampling-
based approaches, aiming to simulate the data dis-
tribution of reference during training. Scheduled
sampling (Bengio et al., 2015) is a representative
method, which samples tokens between golden ref-
erences and model predictions with a scheduled
probability. Zhang et al. (2019) further refine the
sampling space of scheduled sampling with predic-
tions from beam search. Mihaylova and Martins
(2019) and Duckworth et al. (2019) extend sched-
uled sampling to the Transformer with a novel two-
pass decoding architecture.

Although these sampling-based approaches have
been shown effective, most of them schedule the
sampling probability based on training steps. We
argue this schedule strategy has two following lim-
itations: 1) It is far from exactly reflecting the
real-time model competence; 2) It is only based
on training steps and equally treat all token po-
sitions, which is too coarse-grained to guide the
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sampling selection for each target token. These
two limitations yield an inadequate and inefficient
schedule strategy, which hinders the potential per-
formance and convergence speed of vanilla sched-
uled sampling-based approaches.

To address these issues, we propose confidence-
aware scheduled sampling. Specifically, we take
the model prediction confidence as the assessment
of real-time model competence, based on which we
design fine-grained schedule strategies. Namely,
we sample predicted tokens as target inputs for
high-confidence positions and still ground-truth to-
kens for low-confidence positions. In this way,
the NMT model is exactly exposed to correspond-
ing tokens according to its real-time competence
rather than coarse-grained predefined patterns. Ad-
ditionally, we observe that most predicted tokens
are the same as ground-truth tokens due to teacher
forcing1, degenerating scheduled sampling to the
original teacher forcing mode. Therefore, we fur-
ther expose more noisy tokens (Meng et al., 2020)
(e.g., wordy and incorrect word order) instead of
predicted ones for high-confidence token positions.
Experimentally, we evaluate our approach on the
Transformer (Vaswani et al., 2017) and conduct
experiments on large-scale WMT 2014 English-
German (EN-DE), WMT 2014 English-French
(EN-FR), and WMT 2019 Chinese-English (ZH-
EN).

The main contributions of this paper can be sum-
marized as follows2:

• To the best of our knowledge, we are the first
to propose confidence-aware scheduled sam-
pling for NMT, which exactly samples cor-
responding tokens according to the real-time
model competence rather than coarse-grained
predefined patterns.

• We further explore to sample more noisy to-
kens for high-confidence token positions, pre-
venting scheduled sampling from degenerat-
ing into the original teacher forcing mode.

• Our approach significantly outperforms the
Transformer by 1.01, 1.03, 0.98 BLEU and
outperforms the stronger scheduled sampling
by 0.51, 0.41, and 0.58 BLEU on EN-DE,

1We observe that about 70% tokens are correctly predicted
in WMT14 EN-DE training data.

2Codes are available at https://github.com/Ada
xry/conf aware ss4nmt.
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Figure 1: Scheduled sampling for the transformer with
two-pass decoding (Mihaylova and Martins, 2019).

EN-FR, and ZH-EN, respectively. Our ap-
proach speeds up model convergence about
3.0× faster than the Transformer and about
1.8× faster than vanilla scheduled sampling.

• Extensive analyses indicate the effectiveness
and superiority of our approach on longer sen-
tences. Moreover, our approach can facilitate
the training of the Transformer model with
deeper decoder layers.

2 Background

2.1 Neural Machine Translation
Given a pair of source language X =
{x1, x2, · · · , xm} with m tokens and target lan-
guage Y = {y1, y2, · · · , yn} with n tokens, neural
machine translation aims to model the following
translation probability:

P (Y|X) =
n∏

t=1

P (yt|y<t,X, θ)

=
n∑

t=1

logP (yt|y<t,X, θ) (1)

where t is the index of target tokens, y<t is the
partial translation before yt, and θ is model param-
eter. In the training stage, y<t are ground-truth
tokens, and this procedure is also known as teacher
forcing. The translation model is generally trained
with maximum likelihood estimation (MLE).

2.2 Scheduled Sampling for the Transformer
Scheduled sampling is initially designed for Recur-
rent Neural Networks (Bengio et al., 2015), and
further modifications are needed when applied to
the Transformer (Mihaylova and Martins, 2019;

https://github.com/Adaxry/conf_aware_ss4nmt
https://github.com/Adaxry/conf_aware_ss4nmt
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Duckworth et al., 2019). As shown in Figure 1,
we follow the two-pass decoding architecture. In
the first pass, the model conducts the same as a
standard NMT model. Its predictions are used to
simulate the inference scene3. In the second pass,
inputs of the decoder ỹ<t are sampled from predic-
tions of the first pass and ground-truth tokens with
a certain probability. Finally, predictions of the
second pass are used to calculate the cross-entropy
loss, and Equation (1) is modified as follow:

P (Y|X) =

n∑
t=1

logP (yt|ỹ<t,X, θ) (2)

Note that the two decoders are identical and share
the same parameters. At inference, only the first de-
coder is used, that is just the standard Transformer.
How to schedule the above probability of sampling
tokens is the key point, which is exactly what we
aim to improve in this paper.

2.3 Decay Strategies on Training Steps
Existing schedule strategies are based on training
steps (Bengio et al., 2015; Zhang et al., 2019). As
the number of the training step i increases, the
model should be exposed to its own predictions
more frequently. At the i-th training step, the prob-
ability of sampling golden tokens f(i) is calculated
as follow:

• Linear Decay: f(i) = max(ε, ki+ b), where
ε is the minimum value, and k < 0 and b are
respectively the slope and offset of the decay.

• Exponential Decay: f(i) = ki, where k <
1 is the radix to adjust the sharpness of the
decay.

• Inverse Sigmoid Decay: f(i) = k

k+e
i
k

, where

e is the mathematical constant, and k ≥ 1 is a
hyperparameter to adjust the sharpness of the
decay.

We draw visible examples for different decay strate-
gies in Figure 2.

3 Approaches

In this section, we firstly describe how to estimate
model confidence at each token position. Secondly,

3Following Goyal et al. (2017), model predictions are the
weighted sum of target embeddings over output probabilities.
As model predictions cause a mismatch with golden tokens,
they can simulate translation errors of the inference scene.
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Figure 2: Examples of different decay strategies f(i).

we elaborate the fine-grained schedule strategy
based on model confidence. Finally, we explore
to sample more noisy tokens instead of predicted
tokens for high-confidence positions.

3.1 Model Confidence Estimation
We explore two approaches to estimate model con-
fidence at each token position.

Predicted Translation Probability (PTP). Cur-
rent NMT models are well-calibrated with regu-
larization techniques in the training setting (Ott
et al., 2018; Müller et al., 2019; Wang et al., 2020).
Namely the predicted translation probability can
directly serve as the model confidence. At the t-
th target token position, we calculate the model
confidence conf(t) as follow:

conf(t) = P (yt|y<t,X, θ) (3)

Since we base our approach on the Transformer
with two-pass decoding (Mihaylova and Martins,
2019; Duckworth et al., 2019), above predicted
translation probability can be directly obtained in
the first-pass decoding (shown in Figure 1), causing
no additional computation costs.

Monte Carlo Dropout Sampling. The model
confidence can be quantified by Bayesian neural
networks (Buntine and Weigend, 1991; Neal, 2012),
which place distributions over the weights of neu-
ral networks. We adopt widely used Monte Carlo
dropout sampling (Gal and Ghahramani, 2016;
Wang et al., 2019b) to approximate Bayesian infer-
ence. Given a batch of training data and current
NMT model parameterized by θ, we repeatedly
conduct forward propagation K times4. On the
k-th propagation, part of neurons θ̂(k) in network

4We empirically set K to 5 following Wan et al. (2020).
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θ are randomly deactivated. Eventually, we ob-
tain K sets of model parameters {θ̂(k)}Kk=1 and
corresponding translation probabilities. We use
the expectation or variance of translation proba-
bilities to estimate the model confidence (Wang
et al., 2019b). Intuitively, the higher expectation
or, the lower variance of translation probabilities
reflects higher model confidence. Formally at the
t-th token position, we estimate the model confi-
dence conf(t) that calculated by the expectation
of translation probabilities:

conf(t) = E
[
P (yt|y<t,X, θ̂

(k))
]K
k=1

(4)

We also use the variance of translation probabilities
to estimate the model confidence conf(t) as an
alternative:

conf(t) = 1−Var [P (yt|y<t,X, θ)]
K
k=1 (5)

where Var[·] denotes the variance of a distribution
that calculated following the setting in (Wang et al.,
2019b; Zhou et al., 2020). We will further analyze
the effect of different confidence estimations in
Section 4.2.

3.2 Confidence-Aware Scheduled Sampling

The confidence score conf(t) quantifies whether
the current NMT model is confident or hesitant on
predicting the t-th target token. We take conf(t)
as exact and real-time information to conduct a
fine-grained schedule strategy in each training it-
eration. Specifically, a lower conf(t) indicates
that the current model θ still struggles with the
teacher forcing mode for the t-th target token,
namely underfitting for the conditional probabil-
ity P (yt|y<t,X, θ). Thus we should keep feeding
ground-truth tokens for learning to predict the t-th
target token. Conversely, a higher conf(t) indi-
cates the current model θ has learned well the basic
conditional probability under teacher forcing. Thus
we should empower the model with the ability to
cope with the exposure bias problem. Namely, we
take inevitably erroneous model predictions as tar-
get inputs for learning to predict the t-th target.

Formally, in the second-pass decoding, the above
fine-grained schedule strategy is conducted at all
decoding steps simultaneously:

yt−1 =

{
yt−1 if conf(t) ≤ tgolden
ŷt−1 else

(6)

Dataset Size (M) Valid / Test set
WMT14 EN-DE 4.5 newstest 2013 / 2014
WMT14 EN-FR 36 newstest 2013 / 2014
WMT19 ZH-EN 20 newstest 2018 / 2019

Table 1: Dataset statistics in our experiments.

where tgolden is a threshold to measure whether
conf(t) is high enough (e.g., 0.9) to sample the
predicted token ŷt−1.

3.3 Confidence-Aware Scheduled Sampling
with Target Denoising

Considering predicted tokens are obtained from
the teacher forcing model, most predicted tokens
(e.g., about 70% tokens in WMT14 EN-DE) are the
same as ground-truth tokens, which degenerate the
scheduled sampling to the original teacher forcing.
Although previous study (Zhang et al., 2019) have
proposed to address this issue by using predictions
from beam search, it conducts very slowly (about
4× slower than ours) due to the autoregressive prop-
erty of beam search decoding. To avoid the above
degeneration problem while preserving computa-
tional efficiency, we try to add more noisy tokens
instead of predicted tokens for high-confidence po-
sitions. Inspired by Meng et al. (2020), we replace
ground-truth yt−1 with a random token yrand of the
current target sentence, which can simulate wordy
and incorrect word order phenomena that occur at
inference. Considering yrand is more difficult5 to
learn than ŷt−1, we only adopt the noisy yrand for
higher confidence positions. Therefore, the fine-
grained schedule strategy in Equation 6 is extended
to:

yt−1 =


yt−1 if conf(t) ≤ tgolden
ŷt−1 if tgolden < conf(t) ≤ trand
yrand if conf(t) > trand

(7)

where trand is a threshold to measure whether
conf(t) is high enough (e.g., 0.95) to sample the
random target token yrand. We provide detailed
selections about tgolden and trand in Section 4.2.

5Given a pre-trained Transformerbase model, we respec-
tively replace ground-truth tokens with predicted tokens ŷ or
random tokens yrand with the same rate, and measure such
difficulty by the increment of model perplexity. We observe
that yrand yields about 15% higher model perplexity than ŷ.
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4 Experiments

We conduct experiments on three large-scale
WMT 2014 English-German (EN-DE), WMT 2014
English-French (EN-FR), and WMT 2019 Chinese-
English (ZH-EN) translation tasks. We respectively
build a shared source-target vocabulary for the EN-
DE and EN-FR datasets, and unshared vocabularies
for the ZH-EN dataset. We apply byte-pair encod-
ing (Sennrich et al., 2016) with 32k merge opera-
tions for all datasets. More datasets statistics are
listed in Table 1.

4.1 Implementation Details

Training Setup. We train the Transformerbase
and Transformerbig models (Vaswani et al., 2017)
with the open-source THUMT (Zhang et al., 2017).
All Transformer models are first trained by teacher
forcing with 100k steps, and then trained with dif-
ferent training objects or scheduled sampling ap-
proaches for 300k steps. All experiments are con-
ducted on 8 NVIDIA Tesla V100 GPUs, where
each is allocated with a batch size of approximately
4096 tokens. We use Adam optimizer (Kingma and
Ba, 2014) with 4000 warmup steps. During train-
ing and the Monte Carlo Dropout process, we set
dropout (Srivastava et al., 2014) rate to 0.1 for the
Transformerbase and 0.3 for the Transformerbig.

Evaluation. We set the beam size to 4 and the
length penalty to 0.6 during inference. We use
multibleu.perl to calculate case-sensitive BLEU
scores for WMT14 EN-DE and EN-FR, and use
mteval-v13a.pl to calculate case-sensitive BLEU
scores for WMT19 ZH-EN. We use the paired boot-
strap resampling methods (Koehn, 2004) to com-
pute the statistical significance of test results.

4.2 Hyperparameter Experiments

In this section, we elaborate hyperparameters set-
tings involved in our approaches according to the
performance on the validation set of WMT14 EN-
DE, and share these settings for all WMT tasks.

Different Confidence Estimations. In this sec-
tion, we analyze effects of different estimations
for model confidence described in Section 3.1. As
shown in Table 2, we observe that Monte Carlo
dropout sampling based approaches (i.e., expec-
tation and variance of translation probabilities)
achieve comparable or marginally better trans-
lation quality than PTP. However, since Monte
Carlo dropout sampling based approaches need

Methods Training Cost BLEU ∆

Transformerbase ref. 27.10 ref.
+ PTP 1.3× 28.15 +1.05
+ Expectation 2.7× 28.15 +1.05
+ Variance 2.7× 28.20 +1.10

Table 2: BLUE scores (%) on the validation set of
WMT14 EN-DE with different confidence estimations.
‘Training Cost’ is calculated by the total training time
until models convergence on 8 NVIDIA V100 GPUs.
‘PTP’ refers to PTP-based confidence estimation in
Equation (3). ‘Expectation’ and ‘Variance’ refers to
Monte Carlo dropout sampling-based confidence esti-
mation in Equation (4) and (5), respectively. ‘ref.’ is
short for the reference baseline.

additional passes for forward propagation, which
yields about 2.7× computation costs than the
Transformerbase. On the contrary, PTP only causes
marginal additional computation costs (1.3×) than
the Transformerbase, as PTP can be directly ob-
tained in the first pass decoding. Considering the
trade-off between training efficiency and final per-
formance, we use PTP to estimate model confi-
dence by default in the following experiments.

Thresholds Settings. There are two important
hyperparameters in our approaches, namely the
two threshold tgolden and trand that determine to-
ken selections in Equation (7). In our preliminary
experiments, we observe our approach is relatively
not sensitive to tgolden, thus we firstly fix tgolden
to a modest value, i.e., 0.5 and analyze effects
when trand ranging from 0.5 to 0.95. As the red
line is shown in Figure 3, we observe that a rapid
improvement in performance with the growth of
trand. Therefore, we decide to set trand to 0.95
and then analyze effects when tgolden ranging from
0.5 to 0.95. As the blue line is shown in Figure
3, the model performance gently rises with the
growth of tgolden and finally achieves its peak when
tgolden = 0.9. Thus we finally set tgolden to 0.9.

4.3 Systems

Mixer. A sequence-level training algorithm for
text generations by combining both REINFORCE
and cross-entropy (Ranzato et al., 2016).

Minimal Risk Training. Minimal Risk Training
(MRT) (Shen et al., 2016) introduces evaluation
metrics (e.g., BLEU) as loss functions and aims to
minimize expected loss on the training data.
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Model BLEU
EN-DE ZH-EN EN-FR

Transformerbase (Vaswani et al., 2017) 27.30 – 38.10
Transformerbase (Vaswani et al., 2017) † 27.90 24.97 40.30

+ Mixer (Ranzato et al., 2016) † 28.54 25.28 40.57
+ Minimal Risk Training (Shen et al., 2016) † 28.55 25.23 40.82
+ TeaForN (Goodman et al., 2020) 27.90 – 40.84
+ TeaForN (Goodman et al., 2020) † 28.60 25.45 40.94
+ Self-paced learning (Wan et al., 2020) † 28.85 25.56 41.12
+ Vanilla scheduled sampling (Bengio et al., 2015) † 28.40 25.43 40.87
+ Target denoising (Meng et al., 2020) † 28.55 25.58 40.57
+ Sampling with sentence oracles (Zhang et al., 2019) 28.65 – –
+ Sampling with sentence oracles (Zhang et al., 2019) † 28.65 25.50 40.85
+ Confidence-aware scheduled sampling (ours) † 28.80∗ 25.95∗∗ 41.19∗∗
+ Confidence-aware scheduled sampling with target denoising (ours) † 28.91∗∗ 26.00∗∗ 41.28∗∗

Transformerbig (Vaswani et al., 2017) 28.40 – 41.80
Transformerbig (Vaswani et al., 2017) † 28.90 25.22 41.89

+ Mixer (Ranzato et al., 2016) † 29.27 25.58 42.37
+ Minimal Risk Training (Shen et al., 2016) † 29.35 25.65 42.46
+ TeaForN (Goodman et al., 2020) 29.30 – 42.73
+ TeaForN (Goodman et al., 2020) † 29.32 25.48 42.62
+ Error correction (Song et al., 2020) 29.20 – –
+ Self-paced learning (Wan et al., 2020) † 29.68 25.56 42.32
+ Vanilla scheduled sampling (Bengio et al., 2015) † 29.62 25.60 42.55
+ Target denoising (Meng et al., 2020) † 29.18 25.56 42.32
+ Scheduled sampling with sentence oracles (Zhang et al., 2019) † 29.57 25.78 42.65
+ Confidence-aware scheduled sampling (ours) † 29.95∗∗ 26.00∗∗ 42.90∗∗
+ Confidence-aware scheduled sampling with target denoising (ours) † 30.09∗∗ 26.27∗∗ 42.97∗∗

Table 3: Translation performance on each WMT dataset. ‘†’ is our implementations under unified settings. The
original TeaForN (Goodman et al., 2020) reports SacreBLEU scores. For fair comparison, we re-implement it and
report BLEU scores. ‘∗/∗∗’: significantly (Koehn, 2004) better than ‘Vanilla Scheduled Sampling’ with p < 0.05
and p < 0.01.

Figure 3: BLUE scores (%) on the validation set of
WMT14 EN-DE with different tgolden and trand.

TeaForN. Teacher forcing with n-grams (Good-
man et al., 2020) enable the standard teacher forc-
ing with a broader view by n-grams optimization.

Self-paced learning. Wan et al. (2020) assign
confidence scores for each input to weight its loss.

Vanilla schedule sampling. Scheduled sam-
pling on training steps with the inverse sigmoid
decay (Bengio et al., 2015; Zhang et al., 2019).

Sampling with sentence oracles. Zhang et al.
(2019) refine the sampling space of scheduled sam-
pling with sentence oracles, i.e., predictions from
beam search. Note that its sampling strategy is still
based on training steps with the sigmoid decay.

Target denoising. Meng et al. (2020) add noisy
perturbations into decoder inputs when training,
which yields a more robust translation model
against prediction errors by target denoising.

Confidence-aware scheduled sampling. Our
fine-grained schedule strategy described in Equa-
tion (6) with tgolden = 0.9.

Confidence-aware scheduled sampling with tar-
get denoising. Our fine-grained schedule strat-
egy described in Equation (7) with tgolden = 0.9



2333

Schedule Strategy BLEU ∆

Transformerbase 27.10 ref.
+ Linear decay 27.56∗ +0.46
+ Exponential decay 27.60∗ +0.50
+ Inverse sigmoid decay 27.65∗ +0.55
+ Confidence (ours) 28.15∗∗ +1.05

Table 4: BLUE scores (%) on the validation set
of WMT14 EN-DE with different schedule strategies.
‘Confidence’ refers to the confidence-aware strategy in
Equation (6). ‘ref.’ is short for the reference baseline.
‘∗ / ∗∗’: significantly (Koehn, 2004) better than the
Transformerbase with p < 0.05 and p < 0.01.

and trand = 0.95 .

4.4 Main Results

We list translation qualities in Table 3. For the
Transformerbase baseline, our ‘Confidence-aware
scheduled sampling’ shows consistent improve-
ments by 0.90, 0.98, 0.89 BLEU points on EN-DE,
ZH-EN, and EN-FR, respectively. Moreover, after
applying the more fine-grained strategy with tar-
get denoising, our ‘Confidence-aware scheduled
sampling with target denoising’ achieves further
improvements which are 1.01, 1.03, 0.98 BLEU
points on EN-DE, ZH-EN, and EN-FR, respec-
tively. When comparing with the stronger vanilla
scheduled sampling method, ‘Confidence-aware
scheduled sampling with target denoising’ still
yields improvements by 0.51, 0.57, and 0.41 BLEU
points on the above three tasks, respectively. For
the more powerful Transformersbig, we also ob-
serve similar experimental conclusions as above.
Specifically, ‘Confidence-aware scheduled sam-
pling with target denoising’ outperforms vanilla
scheduled sampling by 0.47, 0.67, and 0.42 BLEU
points, respectively. In summary, experiments on
strong baselines and various tasks verify the effec-
tiveness and superiority of our approaches.

5 Analysis and Discussion

We analyze our proposals on WMT 2014 EN-DE
with the Transformerbase model.

5.1 Effects of Confidence-Aware Strategies

In this section, we rigorously validate the effective-
ness of confidence-aware strategies by univariate
experiments with the only difference at schedule
strategy. As shown in Table 4, existing heuris-
tic functions, i.e., linear, exponential, and inverse
sigmoid decay, moderately bring improvements

Model BLEU ∆

Our approach 28.15 ref.
− Confidence 27.75 -0.40
− Denoising 28.00 -0.15
− Confidence & Denoising 27.64 -0.51

Table 5: BLUE scores (%) on the validation set of
WMT14 EN-DE for ablation experiments. ‘Our ap-
proach’ is ‘confidence-aware scheduled sampling with
target denoising’ in Equation (7). ‘Confidence’ refers
to the confidence-aware strategy in Equation (7). ‘De-
noising’ refers to the target random noise yrand in
Equation (7). ‘ref.’ is short for the reference baseline.

over the Transformerbase baseline by 0.46, 0.50,
and 0.55 BLEU points, respectively. While our
confidence-aware strategy that described in Equa-
tion (6) can significantly outperform the baseline
by 1.05 BLEU points. We attribute the effective-
ness of the confidence-aware strategy to its exact
and suitable token assignments according to the
real-time model competence rather than predefined
patterns.

5.2 Ablation Experiments

We conduct ablation experiments to investigate the
impacts of various components in our ‘Confidence-
aware scheduled sampling with target denoising’
(described in Equation (7)) and list results in Ta-
ble 5. Separately removing the confidence-aware
strategy degenerates our approach into the vanilla
target denoising with a uniform strategy (Meng
et al., 2020), which causes a noticeable drop (0.4
BLEU), indicating the confidence-aware strategy
plays a leading role for performance. On the other
hand, we only observe a drop (0.15 BLEU) when
removing ‘Target denoising’, revealing the addi-
tional noise plays a secondary role for performance.
Finally, ablating both the confidence-aware strat-
egy and ‘Target denoising’ degenerates our ap-
proach into the vanilla scheduled sampling. It
yields a further decrease (0.51 BLEU), suggesting
the confidence-aware strategy and ‘Target denois-
ing’ are complementary with each other.

5.3 Different Numbers of Decoder Layers

As known in existing studies (Domhan, 2018;
Wang et al., 2019a), there exists a performance
bottleneck at the decoder side of NMT models.
Namely, the increase in the number of decoder lay-
ers can not bring corresponding improvements for
performance. He et al. (2019) attribute this bottle-
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Figure 4: BLUE scores (%) on the validation set of
WMT14 EN-DE with different numbers of decoder lay-
ers. Solid lines refer to our confidence-aware schedule
strategy. Dashed lines refer to the Transformerbase.

neck to the fact that decoders learn an easier task
than encoders.

In this paper, our fine-grained schedule strat-
egy in Equation (7) assigns a more difficult task to
the decoder. We can not help wondering whether
our strategy is able to alleviate the above perfor-
mance bottleneck. Firstly, we keep the number
of encoders fixed to 6 (i.e., Encoder-6), then ap-
ply our confidence-aware schedule strategy on the
Encoder-6 Transformerbase with the number of de-
coder layers ranging from 1 to 6. As shown in Fig-
ure 4, our approach (solid red line) consistently out-
performs the Encoder-6 Transformerbase (dashed
red line). More importantly, the improvement of
Encoder-6 Transformerbase stops (i.e., performance
bottleneck) once the number of decoder exceeds 4.
Despite this, we observe continuous improvement
with the growth of decoder layers in our approach.
Moreover, we repeat the above experiments with
more powerful deep encoders (Encoder-20). We ob-
serve that the performance bottleneck for Encoder-
20 Transformerbase becomes more evident (dashed
blue line). Despite this, our approaches (solid blue
line) still keep improving performance with the
growth of decoder layers on the stronger Encoder-
20 Transformerbase.

In summary, our confidence-aware schedule
strategy brings a meaningful increase in the diffi-
culty of decoders, and the bottleneck at the decoder
side is alleviated to a certain extend.

5.4 Effects on Different Sequence Lengths

Due to error accumulations, the exposure bias prob-
lem becomes more problematic with the growth of
sequence lengths (Zhou et al., 2019; Zhang et al.,
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33

[1, 10) [11, 20) [21, 30) [31, 40) [41, 50) [51, 60) [61, 70) [71, 80) [81, 90) [91, 100]

Performance on Different Sequence Lengths

Our approach Transformer base

Figure 5: BLUE scores (%) on the randomly sampled
WMT14 EN-DE training data with different lengths.

2020). Thus it is intuitive to verify the effectiveness
of our approach over different sequence lengths.
Considering the validation set of WMT14 EN-DE
(3k) is too small to cover scenarios with various
sentence lengths, we randomly select 10k train-
ing data with lengths from 10 to 100. As shown
in Figure 5, our approach consistently outperform
the Transformerbase model at different sequence
lengths. Moreover, the improvements of our ap-
proach over the Transformerbase is gradually in-
creasing with sentence lengths. Specifically, we
observe more than 1.0 BLEU improvements when
sentence lengths in [80, 100].

5.5 Model Convergence
As aforementioned, our confidence-aware sched-
uled sampling learns to deal with the exposure bias
problem in an efficient manner, thus speeding up
the model convergence. As shown in Figure 6, it
costs the Transformerbase 245k steps to converge
to a local optimum (about 27.1 BLEU). To achieve
the same performance, it only costs our confidence-
aware scheduled sampling 80k step, namely about
3.0× speed up over the Transformerbase and 1.8×
speed up over the vanilla scheduled sampling.
Since vanilla scheduled sampling randomly ex-
poses more difficult predicted tokens for each to-
ken position, regardless of the actual model com-
petence, its convergence speed is restricted to a
certain extent. On the contrary, our approach sam-
ples predicted tokens only if the current model is
capable of dealing with these more difficult inputs,
mimicking the learning process of humans. There-
fore, our approach is trained more efficiently.

6 Related Work

Confidence-aware Learning for NMT. As to
confidence estimations for NMT, Zoph et al. (2015)
frame translation as a compression game and mea-
sure the amount of information added by transla-
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3.0x speed up

1.8x speed up

Figure 6: Convergence curves for different models.
BLUE scores (%) are calculated on the validation set of
WMT14 EN-DE. Our approach can achieve the same
performance as the Transformerbase with about 3.0×
speed up.

tors. Wang et al. (2019b) propose to quantify the
confidence of NMT model predictions based on
model uncertainty, which is widely extend to select
training samples (Jiao et al., 2020; Dou et al., 2020),
to design confidence-aware curriculum learning
(Zhou et al., 2020; Wan et al., 2020), and to aug-
ment synthetic corpora (Wei et al., 2020). Model
confidence is also served as a useful metric for ana-
lyze NMT model from the perspective of fitting and
search (Ott et al., 2018), visualization (Rikters et al.,
2017) and calibration (Kumar and Sarawagi, 2019;
Wang et al., 2020). Different from existing stud-
ies, we are the first to propose confidence-aware
scheduled sampling for alleviating the exposure
bias problem in NMT.

7 Conclusion

In this paper, we propose confidence-aware sched-
uled sampling for NMT, which exactly samples
corresponding tokens according to the real-time
model competence rather than human intuitions.
We further explore to sample more noisy tokens for
high-confidence token positions, preventing sched-
uled sampling from degenerating into the original
teacher forcing mode. Experiments on three large-
scale WMT translation tasks suggest that our ap-
proach improves vanilla scheduled sampling both
translation quality and convergence speed. We elab-
orately analyze the effectiveness and efficiency of
our approach from multiple aspects. As a result, we
further observe our approaches: 1) can alleviate the
performance bottleneck of decoders for NMT to a
certain extend; 2) improve the translation quality
of long sequences.
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