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Abstract

Information Extraction (IE) for semi-
structured document images is often ap-
proached as a sequence tagging problem
by classifying each recognized input token
into one of the IOB (Inside, Outside, and
Beginning) categories. However, such prob-
lem setup has two inherent limitations that
(1) it cannot easily handle complex spatial
relationships and (2) it is not suitable for
highly structured information, which are
nevertheless frequently observed in real-world
document images. To tackle these issues,
we first formulate the IE task as spatial
dependency parsing problem that focuses
on the relationship among text tokens in the
documents. Under this setup, we then propose
SPADEs (SPAtial DEpendency parser) that
models highly complex spatial relationships
and an arbitrary number of information layers
in the documents in an end-to-end manner. We
evaluate it on various kinds of documents such
as receipts, name cards, forms, and invoices,
and show that it achieves a similar or better
performance compared to strong baselines
including BERT-based IOB taggger.

1 Introduction

Document information extraction (IE) is the task
of mapping each document to a structured form
that is consistent with the target ontology (e.g.,
database schema), which has become an increas-
ingly important task in both research community
and industry. In this paper, we are particularly in-
terested in information extraction from real-world,
semi-structured document images, such as invoices,
receipts, and name cards, where we assume Opti-
cal Character Recognition (OCR, i.e. detecting the
locations of the text tokens if the input is an image)
has been already applied. Previous approaches for
semi-structured document IE often assume as if

the input is a one-dimensional sequence and formu-
late the task as an IOB (Inside Outside Beginning)
tagging problem. In this setup, the tokens in the
document (either obtained through an OCR engine
or trivially parsed from a web page or pdf) are first
serialized, and then an independent tagging model
classifies each of the flattened lists into one of the
pre-defined IOB categories (Ramshaw and Mar-
cus, 1995; Palm et al., 2017). While effective for
relatively simple documents, their broader applica-
tion in the real world is still challenging because
(1) semi-structured documents often exhibit a com-
plex layout where the serialization algorithm is
non-trivial, and (2) sequence tagging is inherently
not effective for encoding multi-layer hierarchi-
cal information such as the menu tree in receipts
(Fig. 1c).

To overcome these limitations, we propose
SPADEs (SPAtial DEpendency parser), an end-to-
end, serializer-free model that is capable of extract-
ing hierarchical information from complex docu-
ments. Rather than explicitly dividing the original
problem into two independent subtasks of serializa-
tion and tagging, our model tackles the problem in
an end-to-end manner by creating a directed rela-
tion graph of the tokens in the document (Fig. 1). In
contrast to traditional dependency parsing, which
parses the dependency structure in purely (one-
dimensional) linguistic space, our approach lever-
ages both linguistic and (two-dimensional) spatial
information to parse the dependency.

We evaluate SPADEs on eight document IE
datasets created from real-world document images,
including invoices, name cards, forms, and receipts,
with the varying complexity of information struc-
ture. In all of the datasets, our model shows a
similar or better accuracy than strong baselines in-
cluding BERT-based IOB taggers, and particularly
outstands in documents with complex layouts (Ta-
ble 3). These results demonstrate the effectiveness



331

Receipt image

DEEP

...
...

volcano iced
coffee

x4 @1,000 4,000

citron tea x1 @2,000 2,000

{
store_name: "DEEP COFFEE",
store_tel: "29-979-2458"

}
...,
{
menu_name: "volcano iced coffee",
count: "4",
unit_price: "1,000",
price: "4,000"

},
{
menu_name: "citron tea",
count: "1",
unit_price: "2,000",
price: "2,000"

},
...

relation
tagging

parse generation
& normalization

2

3

5

3

6

3

7 8 9

10

1211 14 1513

4

1

company_name

column
name

table
name

row
name

tel: 29-979-2458
COFFEE

Name card

ALBERT EINSTEIN
2

3 4

1

tel: 29-979-2458

Imagination is more important than knowledge.

13806, Relativity street, EPR state

enistein@companyname.com

Research Scientist
PH
YS
ICS

... ...
5 6

7 8 9 10 11

13
14

15 1617 18 19 20

12

Other conceptual examples
tablemulti-columnmultiple information layers

11

7 8
4

9 10

65
1 2

6

3

54

7

10

13

20

18

15

2119

1716

12

8 9

14

11

2 3 2

7 8 9 10 11 12

171614

3

1 2

2 3
5 6

5 6

14

14

15

15

13

4 5 6

15

CO
MP
AN
Y

name 3 4
position 5 6

address 1 2 107
phone 1 212 13

email 114
etc 1 2 1015 16 17 1 2 1018 19 20

8 9 2 1010 11

node 1: "DEEP", [x=2, y=1],
node 2: "COFFEE": [x=3, y=1],
...,
node 5: "volcano", [x=1, y=10],
...

a c

d e

7 8 9

10 11

11

12

127 8

13

17

16 17

18
20 21

1 2 3

33

1 21 2

7 8

1

54 6 9 10

1 27 81 29 10

cell

4

rel-s: rel-g:

store_name

store_tel

menu_name

count

unit_price

price

DEEP

tel: 29-979-2458

COFFEE
1 2

3 4

6 10

7

8

9

12

13

14

15

b

5 11

1
4

13
16

19

Figure 1: The illustration of spatial dependency parsing problem. Receipt parsing is explained in detail with three
subfigures: (a) first, text tokens and their coordinates are extracted from OCR; (b) next, the relations between
tokens are classified into two types: rel-s for serialization and information type (field) classification, and rel-g
for inter-grouping between fields (the numbers inside of circles in (b) indicates the box numbers in (a)); (c) the
final parse is generated by decoding the graph. (d) A sample name card and its spatial dependency parse. (e) Other
conceptual examples showing the versatility of the spatial dependency parsing approach for document IE.

of our end-to-end, graph-based paradigm over the
existing sequential tagging approaches.

In short, our contributions are threefold. (1) We
present a novel view that information extraction for
semi-structured documents can be formulated as a
dependency parsing problem in two-dimensional
space. (2) We propose SPADEs for spatial de-
pendency parsing, which is capable of efficiently
constructing a directed semantic graph of text to-
kens in semi-structured documents.1 (3) SPADEs
achieves a similar or better accuracy than the previ-
ous state of the art or strong BERT-based baselines
in eight document IE datasets.

2 Related Work

The recent surge of interest in automatic informa-
tion extraction from semi-structued documents are
well reflected in their increased number of publi-
cation record from both research community and
industry (Katti et al., 2018; Qian et al., 2019; Liu
et al., 2019; Zhao et al., 2019; Denk and Reisswig,
2019; Hwang et al., 2019; Park et al., 2019; Xu

1https://github.com/clovaai/spade

et al., 2019; Jaume et al., 2019; Zhong et al., 2019;
Rausch et al., 2019; Yu et al., 2020; Wei et al., 2020;
Majumder et al., 2020; Lockard et al., 2020; Gar-
ncarek et al., 2020; Lin et al., 2020; Xu et al., 2020;
Powalski et al., 2021; Wang et al., 2021; Hong et al.,
2021; Hwang et al., 2021). Below, we summarize
some of closely related works published before the
major development of SPADEs.

Serialized IE Previous semi-structured docu-
ment information extraction (IE) methods often
require the input text boxes (obtained from OCR)
to be serialized into a single flat sequence. Hwang
et al. (2019) and Denk and Reisswig (2019) com-
bine a manually engineered text serializer that
turn the OCR text boxes into a sequence and a
Transformer-based encoder, BERT (Devlin et al.,
2018), that performs IOB tagging on the sequence
or semantic segmentation from images. In contrast
to SPADEs, these models rely on the serialization
of the tokens and thus it is difficult to flexibly ap-
ply them to documents with complex layouts such
as multi-column or distorted documents. Xu et al.
(2019) propose LayoutLM that jointly embeds the
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image segments, text tokens, and positions of the
tokens in an image to make a pretrained model
for document understanding. However, LayoutLM
still requires a careful serialization of the tokens
as it relies on the position embeddings of BERT.
Also, it is only evaluated on classification for the
downstream task.

Serializer-free IE Existing serializer-free meth-
ods mostly extract flat key-value pairs, as they
still formulate the task as tagging the text tokens.
They fundamentally differ from SPADEs which
generates a structured output that captures full in-
formation hierarchy represented in the document.
Chargrid (Katti et al., 2018) performs semantic
segmentation on invoice images to extract target
key-value pairs. Although Chargrid uses addi-
tional “bounding boxes” for inter-grouping of cer-
tain fields, the application to the documents that
have more than two information hierarchy levels
is non-trivial. Also, when fields that belong to
the same group are remotely located, the bounding
boxes may need to be modified to have a more com-
plex geometrical shape to avoid overlap between
the boxes.

Graph-based IE Liu et al. (2019); Qian et al.
(2019); Wei et al. (2020); Yu et al. (2020) utilize
a graph convolution network to contextualize the
tokens in a document and a bidirectional LSTM
with CRF to predict the IOB tags. However, the
range of possible parse generations is limited as
IOB tagging can be performed only within each
OCR bounding box, ignoring inter-box relationship.
On the contrary, SPADEs predicts both the intra-
box relationship and the inter-box relationship by
constructing a dependency graph among the tokens.

Lockard et al. (2019, 2020) also utilize a graph
to extract semantic relation from semi-structrued
web-page. The graph is constructed based on rules
from “structured html DOM” and mainly used for
information encoding. On the other hand SPADEs
accepts “unstructured text distributed in 2D” and
generates graphs as the result of decoding (in a
data-driven way).

Dependency parsing Dependency parsing is the
task of obtaining the syntactic or semantic structure
of a sentence by defining the relationships between
the words in the sentence (Zettlemoyer and Collins,
2012; Peng et al., 2017; Dozat and Manning, 2018).
The relations are often expressed as directed, la-
beled arcs. In our work, we view the problem of
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Figure 2: The illustration of SPADEs. (a) Spatial text
encoder contextualizes tokens using their relative spa-
tial vectors {rij} (Eq. 1). (b) The dependency graph is
inferred by mapping the vector representations of each
pair of tokens into a scalar value. The field embeddings
are blue-colored. (c) At each encoder layer `, r`ij is pre-
pared by concatenating four embedding vectors: rela-
tive coordinates, distance, and angles embeddings. W `

stands for a linear projection.

information extraction for semi-structured docu-
ments as a spatial dependency parsing task such
that two-dimensional spatial information is mainly
considered. This setup enables SPADEs to flexibly
handle documents with complicated layouts while
representing the full information hierarchy.

3 Problem definition

In this section, we first describe the task of informa-
tion extraction for semi-structured documents, and
we briefly discuss how the task was approached
in the past as a sequence tagging problem. Then
we formulate it as a spatial dependency parsing
problem. In Section 4, we show how we design our
model for the newly formulated problem.

3.1 Semi-structured document IE

Document IE is often defined as the extraction of
structured information (e.g. key-value pairs) in doc-
uments. For semi-structured documents, the task
becomes more challenging, mainly due to two fac-
tors: (1) complex spatial layout and (2) hierarchical
information structure. In the simplest case, both of
the two factors are minimally present, where the
text is strictly a linear sequence, and the desired
output is simply a list of fields, similar to Named
Entity Recognition (NER) task. However, the prob-
lem becomes more difficult when at least one of
the factors is significant. In name cards, spatial re-
lationship can be tricky; Fig. 1d shows an example
where a naı̈ve left-to-right serialization would fail
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because the company name (“Physics Company”)
is tilted. In receipts, their hierarchical information
structure complicates the problem. For example, in
Fig. 1a), words “volcano” (box 5), “iced” (box 6),
and “coffee” (box 10) together form a single field
menu name, and the field constitutes another group
in the second hierarchical layer with the count
field (box7), unit price field (box 8), and price
field (box 9). Other conceptual examples are shown
in Fig. 1e); documents that have triple information
layers (left), multiple columns (middle), and a table
(right).

3.2 Previous formulation: Sequence tagging
As mentioned, IOB sequence tagging is appropriate
for document IE when the layout and the informa-
tion structure are simple (Ramshaw and Marcus,
1995; Lample et al., 2016; Chiu and Nichols, 2016;
Ma and Hovy, 2020). When one of the factors
is present, however, one has to adopt an ad-hoc
solution to detour the inherent limitation of IOB.

In the case of complex spatial relationship (e.g.,
name card), an advanced, dedicated serialization
method can be considered. However, it may re-
quire layout-specific manual engineering, which
becomes more difficult for documents such as name
cards that exhibit diverse layouts.

In the case of complex information structure
(e.g., receipt), one can consider augmenting each
IOB tag with higher-layer information. For in-
stance, in a typical IOB setting, the menu name
field will require two tags, namely menu name B
and menu name I. To model the second layer infor-
mation (inter-grouping of fields), menu name B can
be augmented into two, namely B2 menu name B,
I2 menu name B, where B2 and I2 indicate the be-
ginning and the inside of the hierarchy’s second
layer. While effective for some applications, this
method would not generalize well to an arbitrary
depth as it requires more tags for each additional
layer.

3.3 Our formulation: Spatial dependency
parsing

To better model spatial relationship and hierarchi-
cal information structure in semi-structured doc-
uments, we formulate the IE problem as “spa-
tial dependency parsing” task by constructing a
dependency graph with tokens and fields as the
graph nodes (node per token and field type). This
is demonstrated in Fig. 1, where empty blue cir-
cles are text nodes, and filled blue circles are field

nodes.
Although the spatial layout of semi-structured

documents is diverse, it can be considered as the re-
alization of mainly two abstract properties between
each pair of nodes, (1) rel-s for the ordering and
grouping of tokens belonging to the same infor-
mation category (blue arrows in Fig. 1b), and (2)
rel-g for the inter-group relation between grouped
tokens or groups (orange arrows in the same fig-
ure). Connecting a field node to a text node indi-
cates that the text is classified into the field. For
example, “volcano iced coffee” in Fig. 1a) is clas-
sified as a menu name by being attached to the
menu name field node with blue arrows, and it is
connected with “x4”, “@1,000”, and “4,000” with
orange arrows to indicate the hierarchical informa-
tion among the groups. The dependency graphs of
name cards and other conceptual examples are also
shown in Fig. 1d and e.

4 Model

To perform the spatial dependency parsing task in-
troduced in the previous section in an end-to-end
fashion, we propose SPADEs that consists of (1)
spatial text encoder, (2) graph generator, and (3)
graph decoder. Spatial text encoder and graph gen-
erator are trained jointly. Graph decoder is a de-
terministic function (without trainable parameters)
that maps the graph to a valid parse of the output
structure.

4.1 Spatial text encoder

Spatial text encoder is based on 2D Transformer
architecture. Unlike the original Transformer
(Vaswani et al., 2017), there is no order among
the input tokens, making the model invariant under
the permutation of the input tokens. Inspired by
Transformer XL (Dai et al., 2019), the attention
weights (between each key and query vector) is
computed by

qTi kj + qTi rij + (bkeyi )Tkj + (breli )T rij (1)

where qi is the query vector of the i-th input token,
kj is the key vector of the j-th input token, rij is
the relative spatial vector of the j-th token with
respect to the i-th token, and bkey|reli is a bias vector.
In (original) Transformer, only the first term of
Equation 1 is used.

The relative spatial vector rij is constructed as
follows (Fig. 2c). First, the relative coordinates be-
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tween each pair of tokens are computed.2 Next, the
coordinates are quantized into integers and embed-
ded using sin and cos functions (Vaswani et al.,
2017). The physical distance and the relative angle
between each pair of the tokens are also embed-
ded in a similar way. Finally, the four embedding
vectors are linearly projected (with a trainable pro-
jection matrix) and concatenated at each encoder
layer.

4.2 Graph generator

As discussed in Section 3.3 and shown in Fig. 1,
every token corresponds to a node and each pair
of the nodes forms one of the two relations (or no
relation): (1) rel-s for serializing tokens within
the same field, and (2) rel-g for inter-grouping
between fields. The dependency graph can be rep-
resented by using a binary matrix M (r) for each re-
lation type r (Fig. 2b) whereM (r)

ij = 1 if their exists
a directed edge from the i-th token to the j-th token
and 0 otherwise. Each M (r) consists of nfield + ntext
number of rows and ntext number of columns where
nfield and ntext represent the number of field types
and the number of tokens, respectively. The graph
generation task now becomes predicting the binary
matrix.

We obtain M (r) as follows. The probability that
there exists a directed edge i

r
−→ j is computed by

h(r)
i =

u(field)
i , for i ≤ nfield

W
(r)
h vi otherwise

d(r)
j =W

(r)
d vj

s(r)
0,ij = (h(r)

i )TW(r)
0 d

(r)
j

s(r)
1,ij = (h(r)

i )TW(r)
1 d

(r)
j

p(r)
ij =

exp(s(r)
1,ij)

exp(s(r)
0,ij) + exp(s(r)

1,ij)
,

(2)

where u(field)
i represents the trainable embedding

vector of the i-th field type node (filled blue circles
in Fig. 1), {vi} is a set of vectors of contextualized
tokens from the enoder,W stands for affine trans-
formation, h is the embedding vector of the head
token, and d is that of the dependent token.

2For example, if “token1” is at (x1 = 1, y1 = 10) and
“token2” is at (x2 = 3, y2 = 4), the relative coordinate of
“token2” with respect to “token1” is (x ′2, y

′
2) = (3−1,4−10) =

(2,−6).

M (r)
ij is obtained by binarizing p(r)

ij as follows.

M (r)
ij (p(r)

ij ) =



1 for (r=s, i is field type node, p(r)
ij ≥ pth)

1 for (r=s, i is text node, p(r)
ij ≥ pth ,

j = arg maxk p
(r)
ik )

1, for (r=g, i is text node, p(r)
ij ≥ pth)

0, otherwise.
(3)

The recall rate of edges can be controlled by vary-
ing the threshold value pth . Here, we set pth = 0.5.

Tail collision avoidance algorithm Each node
in spatial dependency graphs has a single incoming
edge per relation except some special documents
such as table (Fig. 1e). Based on this property, we
apply the following simple yet powerful tail colli-
sion avoidance algorithm: (1) at each tail node hav-
ing multiple incoming edges, all edges are trimmed
except the one with the highest linking probability;
(2) at each head node of the trimmed edges, the
new tail node is found by drawing the next proba-
ble edge whose probability is larger than pth and
belongs to the top three; (3) go back to Step 1 and
repeat the routine until the process becomes self-
consistent or the max iteration limit is reached (set
to 20 in this paper). The algorithm prevents loops
and token redundancy in parses.

4.3 Graph decoder

We decode the generated graph into the final parse
through the following three stages: (1) SEEDING,
(2) SERIALIZATION, and (3) GROUPING (Table
1). In SEEDING, field type nodes (filled circles in
Fig. 1) are linked to multiple text nodes (seeds)
by rel-s. In SERIALIZATION, each seed node
found in the previous stage generates a directed
edge (rel-s) to the next text node (i.e. serializa-
tion) recursively until there is no further node to be
linked. Finally, in GROUPING, the serialized texts
are grouped iteratively, constructing information
layers from the top to the bottom. The total number
of iterations is equal to “the number of information
layers−1”. To group texts using directed edges,
we define a special representative field for each
information layer. Then, the first token of the repre-
sentative field generates directed edges to the first
token of other fields that belong to the same group
using rel-g (for example, menu name (“volcano
iced coffee”) in Fig. 1a) generates directed edges to
other member fields (count (“x4”), unit price
(“@1,000”) and price (“4,000”)).
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The process generates an arborescence3 for each
field (rel-s) and group (rel-g). The resulting set
of graphs has a one-to-one correspondence with
the parse through detokenization. The use of beam
search in SERIALIZATION does not introduce no-
ticeable difference in rel-s probably due to the
short decoding length of the graph (mostly less
than 30). The development of a more advanced
decoding algorithm that generates globally optimal
multiple arborescences remains as future work.

Although undirected edges can be employed for
the inter-grouping of fields, the use of directed
edges has the following merits: (1) an arbitrary
depth of information hierarchy can be described
without increasing the number of relation types
(Fig. 1e) under a unified framework and (2) a parse
can be generated in a straightforward manner by
iteratively selecting dependent nodes.

Table 1: A formal description of the parse decoding process.
s and g stand for rel-s and rel-g respectively.

Action Input node Graph at time t + 1

INITIALIZATION Gt=0 = empty set

SEEDING(µ) µ ∈ field nodes G(seed) = {µ
s
−→ j|M (s)

µj = 1}

SERIALIZATION(i) i ∈ G(seed) ∪ Gt Gt+1 = Gt ∪ {i
s
−→ j|M (s)

ij = 1}

GROUPING(i) i ∈ G(seed) ∪ Gt
i linked to representer fields Gt+1 = Gt ∪ {i

g
−→ j|M (g)

ij = 1}

MERGE Gt = Gt ∪ G(seed)

5 Experimental Setup

5.1 Optical character recognition

To extract the visually embedded texts from an im-
age, we use our in-house OCR system that consists
of CRAFT text detector (Baek et al., 2019b) and
Comb.best text recognizer (Baek et al., 2019a). The
OCR models are finetuned on each of the document
IE datasets. The output tokens and their spatial in-
formation on the image are used as the inputs to
SPADEs.

5.2 Training

We use 12 layers of 2D Transformer encoder
(Section 4.1). The parameters are initialized
from bert-multilingual (Devlin et al., 2018)
4. ADAM optimizer (Kingma and Ba, 2015) is
used with the following learning rates: 1e-5 for the
encoder, 1e-4 for the graph generator, and 2e-5 for

3A directed graph in which, for a vertex u called the root
and any other vertex v, there is exactly one directed path from
u to v (Excerpted from Wikipedia)

4https://github.com/huggingface/transformers

s+bert+iob2 and sadv+bert+iob2. The decay rates
are set to �1 = 0.9, �2 = 0.999. The batch size
is chosen between 4 and 12. SPADEs is trained
by using one to eight NVIDIA V100 or P40 GPUs
for two to seven days, depending on the tasks. The
dev sets are used to pick the best model except
FUNSD task in which the model is trained in two
steps. First, the 25 examples from training set are
sampled and used for a model validation. Next,
the model is further trained using entire training set
and stopped after 1000 epochs. The training dataset
is augmented by randomly rotating the text coordi-
nates by a degree of -10◦ to +10◦, (2) by distorting
the whole coordinates randomly using a trigono-
metric function, and (3) by randomly deleting or
inserting a single token with 3.3% probability each.
Also, 1–2 random tokens from training is attached
at the end of the text segments from OCR bounding
box with 1.7% probability each. In namecard task,
the tokens are not augmented. The identical aug-
mentation algorithm are applied to s+bert+iob2,
sadv+bert+iob2 and SPADEs.

5.3 Evaluation metric

To evaluate the predicted parses that consist of hi-
erarchically organized key-value pairs (e.g. Fig. 3,
Fig. 4, 5, 6 in Appendix) we use F1 score based on
exact match. First the group of key-value pairs be-
tween predictions and ground truth (gt) are matched
based on their string edit distance. Each key-value
pairs in the predicted parse is counted as true pos-
itive if same key-value pair exists within the cor-
responding group in gt. Otherwise it is counted
as false positive. The unmatched key-value pairs
in gt are counted as false negative. The accuracy
of dependency parsing is evaluated by computing
F1 of predicted edges. For FUNSD dataset, entity
labeling and entity linking scores are computed fol-
lowing the original paper (Jaume et al., 2019). See
Appendix A.2 for more details.

5.4 Data statistics

We summarize the data statistics in Table 2, 6. The
property of each dataset and their collection process
is described in Appendix A.1.

6 Experimental Results

The main focus of SPADEs is to handle the two
challenging factors of semi-structured document
information extraction—complex spatial relation-
ships and highly structured information—in a gen-
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a

b c

Figure 3: Examples from CORD (left) and CORD++(right) dev sets. (a) Parses are shown in grouped key-value
format with the errors in red. (b) The illustration of serialization error. (c) The input tokens serialized by Sadv.

Table 2: The dataset properties.

Dataset Lang. Abbr.
# of field

types
# of examples
(train:dev:test) # of fields Mean # of

text nodes Depth
Layout

complexity

CORD IDN co 30 800:100:100 13030 62.3 2 low
CORD+ IDN co+ " " " 62.3 2 high
CORD++ IDN co++ " " " 62.3 2 high
CORD-M IDN co-m " 400:50:50 " 124.6 3 low
Receipt-idn IDN ri 50 9508:458:450 209728 209 2 low
namecard JPN nc 12 22076:256:100 231528 19.4 1 high
Invoice JPN inv 62 896:79:83 37115 412 2 high
FUNSDa ENG fu 4 149:50 9743 179 3 high

a The statistics are from Jaume et al. (2019).

eralizable way. We first show that our model can
handle hierarchical structure in documents by eval-
uating the model on two datasets CORD (Park
et al., 2019) and Receipt-idn that consist of (In-
donesian) receipt images. We then show SPADEs
can perform well on tasks that require modeling
the complex spatial relationship in documents by
reporting the performance on name card IE where
the spatial layout is more complex than receipts.
Then the evaluation on the invoice dataset shows
the advantage of SPADEs when both of the two
challenging factors are simultaneously present. Fi-
nally, we show that SPADEs can handle even more
types of documents by evaluating the model on a
form understanding dataset, FUNSD (Jaume et al.,
2019). Table 3 summarizes the performance of
several baseline models and SPADEs in various
semi-structured document information extraction
tasks.

Handling hierarchical structure in documents
CORD consists of receipt images without creases
or warping. SPADEs initially achieves 91.5% and
87.4% in F1 with and without the oracle (ground
truth OCR results), respectively (Table 3, 1st row,
co). Their dependency parsing score is also shown

Table 3: Parse prediction accuracy. The datasets are referred
by their abbreviations in Table. 2. ∆F1 indicates the difference
between SPADEs (2nd row) and sadv+bert+iob2 (4th row).

test (+oracle†) test

Model co ri nc inv co co+ co++ ri nc inv

SPADEs w/o tca 91.5 92.7 94.0 87.4 87.4 86.1 82.6 88.5 91.1 84.5
SPADEs 92.5 93.3 94.3 88.1 88.2 87.4 83.1 89.1 91.6 85.0
s+bert+iob2 92.4∗ 93.3∗ - - 90.1 74.0 52.0 88.1 - -
sadv+bert+iob2 92.5∗ 93.4∗ 94.4∗ 84.9∗ 90.1 85.4 64.8 89.3 90.5 83.1

∆F1 0 -0.1 -0.1 +3.2 -1.9 +2.0 +18.3 -0.2 +1.1 +1.9

UB-flat 58.1 65.4 100 83.2 - - - - - -

† The input tokens are recognized by human annotators.
* The input tokens are line-grouped by human annotators.

in Table 7 in Appendix (1st panel, co). To push
the performance further, we notice that individual
text nodes have a single incoming edge for each
relation except in special documents like table (Fig.
1). Using this property, we integrate Tail Collision
Avoidance algorithm (tca) that iteratively trims the
tail-sharing-edges and generate new edges until the
process becomes self-consistent (Section 4.2). F1
increases by +1.0% and +0.8% with and without
the oracle upon the integration (2nd row, co).

Importance of generating hierarchical struc-
ture in receipt IE In receipt IE task, the inter-
grouping of fields is critical due to multiple appear-
ance of same field types such as menu name and
price (Fig. 3a). Without the field grouping, the
maximum achievable score is 58.1 F1 (Table 3, 6th
row, UB-flat). Generating hierarchical parses from
the semi-structured documents is relatively new
and thus the direct comparison to previous state-
of-the-art methods are not feasible without con-
siderable modification. General confidential issue
related to industrial documents and multi-lingual
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properties of our task also hinder the comparison.
In this regard, we build our own baselines con-
sisting of the manually engineered serializer and
BERT-based double IOB taggers (s+bert+iob25).

BERT-tagger The serializer generates pseudo-
1D-text from the input tokens distributed in 2D
and groups them line-by-line based on their height
differences. BERT+iob2 predicts the boundary be-
tween the fields and between the groups of the
fields (see Section 3.2 for the detail). In CORD,
s+bert+iob2 shows comparable performance with
SPADEs with the oracle (-0.1 F1) but shows +1.9
F1 on the test set (2nd and 3rd rows, co). The
relatively lower score of SPADEs on the test set
may originate from the small size of the training set
(800, Table 2) as SPADEs needs to handle the text
serialization in a data-driven way. Indeed, when
both models are trained using Receipt-idn that con-
sists of 9508 training examples, SPADEs outper-
forms by +1.0 F1 on the test set (2nd and 3rd rows,
Receipt-idn).

Inflexibility of tagging model in handling com-
plex spatial relationships Next, we prepare
CORD+ and CORD++, which are more chal-
lenging setups where the images are warped or
tilted as often seen in real-world applications
(Fig. 3). SPADEs significantly outperforms
s+bert+iob2 (+13.4% F1 in CORD+, +31.1% F1.b
in CORD++). This is due to the failure in the se-
rialization in s+bert+iob2 resulting in line-mixing
(Fig. 3b, c and Fig. 5, 6 in Appendix). To un-
derstand how much improvement can be achieved
through further manual engineering, we prepare
sadv+bert+iob2 which is equipped with the ad-
vanced serializer where polynomial fitting is em-
ployed to group tokens placed on curvy line. The
result shows although there is a large improve-
ment in CORD+ and CORD++ task compared to
s+bert+iob2, SPADEs still shows the better perfor-
mance (+2.0% in CORD+, +18.3% in CORD++,
1st and 4th rows). This shows the limitation of
a serializer-based method that it cannot be easily
generalized to handle document images in wild
and the performance can be bottlenecked by the
serialization step regardless of how advanced tag-
ging models are. The competent performance of
SPADEs on CORD-M, a dataset generated by con-
catenating two receipt images from CORD into a
single image (Fig. 4 in Appendix), further high-

5S stands for the serializer.

lights the flexibility of SPADEs.

Handling documents having complex layout
We further evaluate SPADEs on name card IE task.
Unlike receipts, no inter-grouping between fields is
necessary for name card IE. However, name cards
often have a complex layout such as non-horizontal
alignment of text or multi column even without
tilting and warping (Fig. 1d). Our model achieves
+1.1% F1 compared to sadv+bert+iob2 on the test
set (Table 3, nc).

Handling documents having both hierarchical
structure and complex layout To fully explore
the capability of SPADEs, we further evaluate the
model on invoice IE task. Typical invoices have a
hierarchical structure where some fields need to be
grouped together, such as item name, count, and
price that correspond to one same item. In addi-
tion, invoices also have a relatively complex lay-
out, having multiple tables or columns. SPADEs
achieves +1.9 F1 compared to sadv+bert+iob2 (Ta-
ble. 3, inv).

Handling general documents In order to see if
SPADEs can handle more general kinds of doc-
uments, we use the FUNSD form understanding
dataset (Jaume et al., 2019) where document IE is
performed under a more abstract setting by finding
general key-value pairs and their inter-grouping
(Section A.1.6). The performance is measured
on two OCR-independent subtasks (Jaume et al.,
2019): (1) “entity-labeling (ELB)” which predicts
the information category of the serialized words,
and (2) “entity-linking (ELK)” which measures the
score for key-value pair link prediction. The evalu-
ation reveals that SPADEs achieves the state of the
art on ELK, outperforming the previous baseline
by 37.3% F1 (Table 4, rightmost column). In ELB,
SPADEs achieves +11.5% F1 absolute improve-
ment with respect to BERT-Base Tagger. Both mod-
els use BERT-Base as a backbone. Although the F1
scores of LayoutLM are higher than our model,
their contributions are orthogonal to ours since
they focus on making a better pretrained model.
Also, it cannot perform ELK. We emphasize that
SPADEs solves the three subtasks–ELB, ELK, and
word serialization–simultaneously, while other tag-
ger models need to use the perfectly serialized in-
put text and solve only entity labeling. The stable
performance of SPADEs over randomly rotated
documents (ELB-R) or shuffled tokens (ELB-S)
supports this highlighting the merit of the serializer-
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free architecture.

Table 4: F1 scores for two FUNSD subtasks: entity labeling
(ELB, ELB-R, and ELB-S) and entity linking (ELK). “Need S”
means the input tokens should be serialized. “# of D” indicates
the number of documents used for layout pretraining.

Model Need S # of D ELB ELB-R ELB-S ELK

Baselinea ◦ 0 57 - - 4
BERT-Base Tagger∗ ◦ 0 60.1 43.9 (-16.2) 42.5 (-17.6) -
BERT-Large Tagger∗ ◦ 0 64.6 47.6 (-17.0) 42.7 (-21.9) -
LayoutLM-Base Taggerb ◦ 500K 69.9 - - -
LayoutLM-Base Tagger∗ ◦ 11M 78.9 72.5 (-6.4) 70.2 (-8.7) -
SPADEs† × 0 71.6 70.5 (-1.1) 72.0 (+0.4)$ 41.3
aJaume et al. (2019). b From Xu et al. (2019).
∗ The source code from https://github.com/microsoft/unilm/tree/master/layoutlm.
$ The separation of long input text (> 512) into multiple independent inputs
introduces small difference in F1.
†Five encoder layers are used for computational efficiency.

Ablation study We probe the role of each com-
ponent of SPADEs via ablation study (Table 5).
The performance drops dramatically upon the re-
moval of the relative coordinate information of to-
kens in the self-attention layer, highlighting its im-
portance in the serializer-free encoder (2nd row).
When the absolute coordinates are used in the in-
put instead of the relative coordinates, F1 drops by
6.9% (3rd row). Finally, 2.6% drop in F1 is ob-
served upon the removal of the data augmentation
during training (4th row).

Table 5: Ablation study on CORD dataset.

Model F1

SPADEs† 84.5
(-) relative coordinate 10.5 (-74.0)
(-) relative coordinate (+) absolute coordinate 78.6 (-6.9)
(-) data augmentation 81.9 (-2.6)

† Five encoder layers are used for computational efficiency.

7 Conclusion

We present SPADEs, a spatial dependency parser
that can extract highly structured information from
documents that have complex layouts. By formulat-
ing document IE as a spatial dependency graph con-
struction problem, we provide a powerful unified
framework that can extract hierarchical informa-
tion without feature engineering. We empirically
demonstrate the effectiveness of our model over var-
ious real-world documents—receipts, name cards,
and invoices—and in a popular form understanding
task.
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A Appendices

A.1 Dataset
A.1.1 Dataset collection
The internal datasets Receipt-idn, namecard and Invoice are annotated by the crowd through an in-house
web application following (Park et al., 2019; Hwang et al., 2019). First, each text segment is labeled
(bounding box and the characters inside) for the OCR task. The text segments are further grouped
according to their field types by the crowds. For Receipt-idn and Invoice, additional group-ids are
annotated to each field for inter-grouping of them. The text segments placed on the same line are also
annotated through row-ids. For quality assurance, the labeled documents are cross-inspected by the
crowds.

A.1.2 CORD, CORD+, CORD++, and CORD-M for receipt IE
CORD and their variant consist of 30 information categories such as menu name, count, unit price,
price, and total price (Table 6). The fields are further grouped and forms the information layer at a
higher level.

A.1.3 Receipt-idn for receipt IE
Receipt-idn is similar to CORD but includes more diverse information categories (50) such as store name,
store address, and payment time (Table 6).

A.1.4 namecard for name card IE
namecard consists of 12 field types, including name, company name, position, and address (Table
6). The task requires grouping and ordering of tokens for each field. Although there is only a single
information layer (field), the careful handling of complex spatial relations is required due to the large
degree of freedom in the layout.

A.1.5 Invoice for invoice IE
Invoice consists of 62 information categories such as item name, count, price with tax, item
price without tax, total price, invoice number, invoice date, vendor name, and
vendor address (Table 6). Similar to receipts, their hierarchical information is represented via
inter-field grouping.

A.1.6 FUNSD for general form understanding
FUNSD form understanding task consists of two sub tasks: entity labeling (ELB) and entity linking (ELK).
In ELB, tokens are classifed into one of four fields–header, question, answer, and other–while doing
serialization of tokens within each field. Both subtasks assume that the input tokens are perfectly serialized
with no OCR error. To emphasize the importance of correct serialization in the real-world, we prepare
two variant of ELB tasks: ELB-R and ELB-S. In ELB-R, the whole documents are randomly rotated
by a degree of -20◦–20◦ and the input tokens are serialized using rotated y-coordinates. In ELB-S task,
the input tokens are randomly shuffled. In both tasks, the relative order of the input tokens within each
field remain unchanged. In ELK task, tokens are linked based on their key-value relations (inter-grouping
between fields). For example, each “header” is linked to the corresponding “question”, and “question” is
paired with the corresponding “answer”.

Table 6: The representative fields of the datasets.

Dataset representative fields and their numbers

CORD,CORD+, CORD++,CORD-M menu name (2572), count (2357), unit price (737), price (2559), total price (974)

Receipt-idn
menu name (28832), munu count (27132), menu unitprice (11530),

menu price (28028), total price (10284), store name (9413), payment time (9817)

namecard name (25917), company name (24386), position (22848), address (26018)

Invoice
item name (2761), count (1950), price with tax(781), price without tax (2230),

total price (844), invoice number (803), invoice date (987), vendor name (993), vendor address (993),

FUNSDa header (563), question (4343), answer (3623), other (1214)

a From (Jaume et al., 2019).
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A.2 Evaluation metric
During calculation of F1 for parses, the difference between prediction and ground truth is not counted
in store name, menu name, and item name fields in receipt and invoice when the edit distance (ED) is
less then 2 or when the ED/gt-string-length ≤ 0.4. Also, in Japanese documents, white spaces are ignored.

In the FUNSD form understanding task, we measure entity labeling (ELB) and entity linking (ELK)
scores following (Jaume et al., 2019). ELB measures the field classification accuracy of already “per-
fectly” serialized tokens of each field (words group), whereas ELK measures the inter-grouping accuracy
between word groups. As SPADEs does both the serialization of the fields and grouping between fields
simultaneously, we do not feed the serialized tokens into SPADEs but only use the oracle information to
indicate the first text node of each field from the predicted graph. These text nodes effectively represent
entire fields and are used for the evaluation.

A.3 The score for the dependency relation prediction

Table 7: The score for the dependency relation prediction. s and g stand for rel-s
and rel-g.

Precision Recall F1

Model rel co ri nc inv fu co ri nc inv fu co ri nc inv fu

s - tca s 96.4 97.7 90.7 97.4 60.6† 97.1 98.8 92.0 98.3 63.7† 96.8 98.3 91.3 97.8 62.2†
s - tca g 87.8 91.1 - 86.7 41.1† 90.1 93.8 - 88.0 34.4† 88.9 92.4 - 87.3 37.4†

s s 96.8 97.8 91.9 97.6 70.4† 97.1 98.8 91.3 98.2 59.8† 96.9 98.3 91.6 97.9 64.6†
s g 89.9 92.2 - 88.6 49.7† 89.2 93.1 - 86.3 30.5† 89.6 92.7 - 87.4 37.8†

UB-no-ser s 100 100 100 100 - 32.7 31.3 57.7 18.8 - 49.3 47.7 73.1 31.7 -
UB-no-ser g 0 0 - 0 - 0 0 - 0 - 0 0 - 0 -

†Five encoder layers are used instead of twelve for computational efficiency.

a

b

c

{
{'menu_name': ['Lemon Tea (L)'], 'count': ['1'], 'price': ['25000']}
{'total_price': ['25000'], 'cash_price': ['30000'], 'change_price': ['5000']}

}
{
{'menu_name': ['PKT TELOR/PERK'], 'price': ['26000']}
{'menu_name': ['TERONG'], 'price': ['12000']}
{'menu_name': ['PARU'], 'price': ['23000']}
{'menu_name': ['SBL GR'], 'price': ['20000']}
{'menu_name': ['NESTLE 330 ML'], 'price': ['8000']}
{'subtotal_price': ['89000'], 'tax_price': ['8900']}
{'total_price': ['97900'], 'menuqty_cnt': ['5.00xITEMS'], 'cash_price': ['100000'], 'change_price': ['2100']}

}

Figure 4: The example of a receipt image from CORD-M (a), the predicted parse (b), and the accuracy table (c).
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Figure 5: The example from CORD, CORD+, and CORD++ dev sets (ids 0–3).
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Figure 6: The example from CORD, CORD+, and CORD++ dev sets (ids 4–7).


