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Abstract

Commonsense reasoning is one of the key
problems in natural language processing, but
the relative scarcity of labeled data holds back
the progress for languages other than English.
Pretrained cross-lingual models are a source
of powerful language-agnostic representations,
yet their inherent reasoning capabilities are
still actively studied. In this work, we design
a simple approach to commonsense reasoning
which trains a linear classifier with weights
of multi-head attention as features. To eval-
uate this approach, we create a multilingual
Winograd Schema corpus by processing sev-
eral datasets from prior work within a standard-
ized pipeline and measure cross-lingual gen-
eralization ability in terms of out-of-sample
performance. The method performs competi-
tively with recent supervised and unsupervised
approaches for commonsense reasoning, even
when applied to other languages in a zero-shot
manner. Also, we demonstrate that most of the
performance is given by the same small sub-
set of attention heads for all studied languages,
which provides evidence of universal reason-
ing capabilities in multilingual encoders.

1 Introduction

Neural networks have achieved remarkable
progress in numerous tasks involving natural lan-
guage, such as machine translation (Bahdanau
et al., 2014; Kaplan et al., 2020; Arivazhagan et al.,
2019), language modeling (Brown et al., 2020),
open-domain dialog systems (Adiwardana et al.,
2020; Roller et al., 2020), and general-purpose
language understanding (Devlin et al., 2019; He
et al., 2021). However, the fundamental problem
of commonsense reasoning has proven to be quite
challenging for modern methods and arguably re-
mains unsolved up to this day. The tasks that aim to

∗Equal contribution.

The town councilors refused to give the demonstra-
tors a permit because they feared violence.
Answer: The town councilors

Figure 1: Example of a Winograd Schema problem.
The resolved pronoun is underlined, two options are
highlighted with an italic font.
measure reasoning capabilities, such as the Wino-
grad Schema Challenge (Levesque et al., 2012),
are deliberately designed not to be easily solved by
statistical approaches, which are a foundation of
most deep learning methods. Instead, these tasks
require implicit knowledge about properties of real-
world entities and their relations in order to resolve
inherent ambiguities of natural language.

Figure 1 illustrates the gist of this task: given a
sentence and a pronoun (they), the goal is to choose
the word that this pronoun refers to from two op-
tions (The town councilors or the demonstrators).
While picking the right answer is straightforward
for humans, the lack of explicit clues makes it hard
for machine learning algorithms to perform better
than majority vote or random choice.

Recently large Transformer-based masked lan-
guage models (MLMs) (Devlin et al., 2019) were
shown to achieve impressive results on several
benchmark datasets for commonsense reasoning
(Sakaguchi et al., 2020; Kocijan et al., 2019; Klein
and Nabi, 2020). However, the best-performing
methods frequently involve finetuning the entire
model on large enough corpora with varying de-
grees of supervision; apart from providing initial
parameter values, the pretrained trained language
model is not used for predictions.

Moreover, these methods have mostly been eval-
uated on English language datasets, despite increas-
ing interest in multilingual evaluation for NLP (Hu
et al., 2020) and the existence of multilingual en-
coders (Conneau et al., 2020; Conneau and Lample,
2019). The XCOPA dataset (Ponti et al., 2020) was
recently proposed as a benchmark for multilingual
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commonsense reasoning, yet its task is different
from the pronoun resolution problem described
above. Versions of Winograd Schema Challenge
exist in different languages, but each version comes
with slight differences in task specification. This
makes holistic cross-lingual evaluation of new com-
monsense reasoning approaches a quite difficult
problem for researchers in the area.

In this work, we propose a simple supervised
method for commonsense reasoning, which trains
a linear classifier on the self-attention weights be-
tween the pronoun and two answer options. To eval-
uate our method and facilitate research in multilin-
gual commonsense reasoning, we aggregate exist-
ing Winograd Schema datasets in English, French,
Japanese, Russian, Portuguese, and Chinese lan-
guages, converting them to a single format with a
strict task definition. Our approach performs com-
parably to supervised and unsupervised baselines
in this setting with both multilingual BERT and
XLM-R models as backbone encoders.

Moreover, we find that the same set of atten-
tion heads can be used to solve reasoning tasks
in all languages, which hints at the emergence of
language-independent linguistic functions in cross-
lingual models and supports the conclusions made
by prior work (Chi et al., 2020; Li et al., 2020). In-
terestingly, when using an unsupervised attention-
based method (Klein and Nabi, 2019), we observe
that restricting the choice of heads to this set also
improves the results of this baseline. This result
suggests that the key to improved performance of
such approaches might lie in the right choice of
heads rather then the exact attention values.

To summarize, our contributions are as follows:

• We offer a simple supervised method to utilize
self-attention heads of pretrained language
models for commonsense reasoning.

• We compile XWINO — a dataset of Winograd
schemas in six languages, bringing all tasks
to the same format1. When evaluated on this
dataset, our method performs competitively to
strong baselines from prior work.

• We demonstrate that in cross-lingual models,
there exists a small subset of attention heads
specializing in universal commonsense rea-
soning. This reveals new linguistic properties
of masked language models trained on multi-
ple languages.

1The datasets and code are available at github.com/
yandex-research/crosslingual winograd

2 Related work

2.1 Winograd Schema challenges
The Winograd Schema Challenge (WSC) was pro-
posed as a challenging yet practical benchmark
for evaluation of machine commonsense reason-
ing (Levesque et al., 2012). Since its introduction,
several English-language benchmarks of varying
difficulty and size were also proposed: notable ex-
amples include Definite Pronoun Resolution (Rah-
man and Ng, 2012) and Pronoun Disambiguation
Problem (Morgenstern et al., 2016) datasets, as
well as WinoGrande, which consists of 44k crowd-
sourced examples (Sakaguchi et al., 2020). A ver-
sion of WSC is also included in the popular Super-
GLUE language understanding benchmark (Wang
et al., 2019a), where it is reformulated as a natural
language inference problem.

There also exist variations of WSC in other
languages: French (Amsili and Seminck, 2017),
Japanese (Shibata et al., 2015), Russian (Shavrina
et al., 2020), Portuguese (Melo et al., 2019), and
Chinese (Bernard and Han, 2020). We use these
datasets in our study to create a multilingual dataset
for commonsense reasoning.

Although in general the task definition of Wino-
grad Schema Challenge was formalized to some
degree, both succeeding datasets and methods pro-
posed by users of these datasets have introduced
various changes to the task specification and even
the input format. In particular, a work by Liu et al.
(2020) provides a thorough comparison of different
ways to formalize the task for WSC and shows that
the same model can give widely varying results de-
pending on the evaluation framework. We describe
our efforts to convert different datasets to a single
format in Section 4.

2.2 Language models applied to
commonsense reasoning

Several works attempt to solve Winograd Schema
Challenge by utilizing pretrained language mod-
els. For example, Trinh and Le (2018) propose
to rank possible answers with an ensemble of
RNN language models by substituting the pronoun
with each of the options. Recently, Klein and
Nabi (2019) introduced Maximum Attention Score
(MAS) for commonsense reasoning. This method
uses the outputs of multi-head attention from each
layer and scores each candidate answer based on
the number of heads for which this answer has the
highest attention value. We use the first (adapted to

https://github.com/yandex-research/crosslingual_winograd
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masked language models as proposed by Salazar
et al., 2020) and the second approaches as base-
lines in the experiments. In essence, our method
can be compared to MAS, but as we demonstrate
in Section 5, several algorithm design differences
along with task supervision allow us to significantly
improve the commonsense reasoning performance.

Large pretrained Transformer models, such as
BERT (Devlin et al., 2019), have also enabled rapid
progress of supervised methods for WSC. One such
method is given by Sakaguchi et al. (2020): the au-
thors propose to concatenate the sentence and one
of the options and to use the [CLS] token repre-
sentation of the resulting sequence for binary clas-
sification. Also, Kocijan et al. (2019) propose a
margin-based loss function which aims to increase
the log-probability of the correct answer as a re-
placement for the masked pronoun. We evaluate
these methods in our experiments without train-
ing on large in-domain datasets; as we show, both
methods are prone to overfitting when applied to
several hundreds of examples.

2.3 Cross-lingual encoder models

Multilingual representations have been a long-
standing goal of the research community: they
allow to serve fewer models for a wide range of lan-
guages and to improve the results on low-resource
languages. Ruder et al. (2019) gives a detailed
survey of different cross-lingual word embedding
approaches, as well as the history of cross-lingual
representations in general.

In this work, we are interested in the latest de-
velopments in multilingual Transformer masked
language models (Devlin et al., 2019; Conneau and
Lample, 2019; Conneau et al., 2020; Siddhant et al.,
2020) that were driven by the advances in transfer
learning for NLP (Howard and Ruder, 2018; Devlin
et al., 2019). In particular, we use pretrained mul-
tilingual BERT (mBERT, Devlin et al., 2019) and
XLM-RoBERTa (XLM-R, Conneau et al., 2020)
for all our experiments.

Recently, there has been increasing interest in
the evaluation of multilingual models: as a re-
sult, several benchmarks, including XTREME (Hu
et al., 2020), XNLI (Conneau et al., 2018) and
XCOPA (Ponti et al., 2020) were introduced.
Although XCOPA is a commonsense reasoning
dataset, it is meant to serve as a multilingual ver-
sion of the COPA dataset (Roemmele et al., 2011),
which offers a problem different from pronoun res-

olution. In this work, we aimed to create a multi-
lingual counterpart of more widely used Winograd
Schema Challenge, so that any future methods for
commonsense reasoning can be easily evaluated on
languages other than English.

2.4 Functions of Transformer heads

Previous works have demonstrated that it is possi-
ble to perform unsupervised zero-shot consistency
parsing with attention heads of pretrained cross-
lingual models (Kim et al., 2020; Li et al., 2020).
In our work, we extend these findings to a conceptu-
ally different task of commonsense reasoning. This
task has significant overlap with coreference reso-
lution, which was shown to be encoded in specific
heads of monolingual BERT (Clark et al., 2019;
Tenney et al., 2019).

Motivated by similar results for monolingual
models, several works have previously demon-
strated that models such as multilingual BERT en-
code grammatical relations (Chi et al., 2020) and
can perform zero-shot entity recognition, as well as
POS-tagging (Pires et al., 2019). Besides present-
ing evidence for universality in pronoun resolution,
which was not studied before, our analysis relies
on attention heads instead of extracting representa-
tions from intermediate layer outputs.

3 Common sense from attention

In this section, we first give a formal definition of
the commonsense reasoning task, most commonly
encountered in Winograd Schema Challenge and
its successors. Then, we provide necessary back-
ground information about the Transformer architec-
ture for transfer learning and describe our proposed
solution for this task.

3.1 Exact task specification

It is known that commonsense reasoning perfor-
mance can vary greatly due to changes in task for-
mulation: for example, recent work by Liu et al.
(2020) reports improvements of up to 6 points when
posing the task as multiple choice instead of binary
classification. Thus, as per recommendations from
this work and in order to create a unified dataset,
we choose the definition of the Winograd Schema
problem which is as strict as possible.

The definition is as follows: the system receives
a sentence with a pronoun and has to choose the
noun (or noun phrase) that this pronoun refers to.
For this choice, the system has two options; both



of which, along with the pronoun, are always in-
cluded as substrings of the initial sentence. We
intentionally do not restrict the choice of sentence
representation or the framing of the task in order to
evaluate a diverse range of solutions.

Although the requirements listed above are quite
general and intuitive when working with WSC,
some of the datasets we employ have samples that
do not conform to them. For example, it might be
the case that the pronoun occurs at several posi-
tions in the sentence without explicit indication of
the one to be resolved. For all such examples, we
attempt to convert them to standardized instances
by hand and drop them only if it is not possible
via simple means: otherwise, the right answer to
the problem is misspecified. We give a detailed
description of our solution in Section 4.2.

3.2 Transformers for sentence
representations

Our method heavily relies on the specifics of the
Transformer architecture (Vaswani et al., 2017),
which has attracted increased interest in NLP re-
cently due to its generation (Raffel et al., 2020;
Brown et al., 2020) and transfer learning (Devlin
et al., 2019; Liu et al., 2019) capabilities.

This architecture consists of several sequential
layers, where each layer contains a feed-forward
block and a self-attention block. Inside the self-
attention block, there are multiple attention heads:
each head first linearly projects the input sequence
z = [z1, . . . , zi, . . . , zn] into sequences of queries
qi, keys ki and values vi, then computes the atten-
tion weights as softmax-normalized values of pair-
wise dot products between all keys and all queries:

αij =
exp(qTi kj)∑n
l=1 exp(q

T
i kl)

(1)

These weights are then used to combine the val-
ues into a single vector for each input vector, and
the layer output is a linear combination of all atten-
tion head outputs.

3.3 Our approach

The method proposed in this work uses interme-
diate outputs of a Transformer masked language
model with L layers and H heads in each layer.
Given an instance of the Winograd Schema prob-
lem, we take the input sentence and mask the pro-
noun that needs to be resolved. After that, we feed
the resulting sentence to the language model and

obtain the activations of each self-attention layer
as a tensor L×H × T , where T is the number of
tokens that constitute the candidate answer. Here,
we can either take the attention from the pronoun
to the candidate or vice versa.

After aggregating the attention outputs by com-
puting the mean or the maximum over T , we have
two matrices for each of two possible answers,
which are then flattened into vectors. Combining
these vectors, we obtain an input for the binary
classification task with class 0 corresponding to the
first answer being correct and class 1 corresponds
to the second one. Given a dataset of such inputs,
we can train a logistic regression to predict the class
from the multi-head attention weights α.

There are several design choices which define
the exact implementation of our method. We de-
scribe them below; for each design choice, we un-
derline the best-performing option as found by the
ablation study in Section 5.4.

Feature combination: With two feature vectors
for candidate answers, we can either concatenate
them or subtract the vector of the second candidate
from the vector of the first one.

Pooling over tokens: As the candidates can have
different length, we need to transform the attention
outputs to feature vectors of the same size. This can
be done by one of two simple forms of aggregation:
mean- or max-pooling.

Attention direction: Observe from Equation 1
that in general, αij 6= αji. To find the optimal
configuration, we evaluate both options of either
attending to the candidate or the pronoun.

4 Dataset

In this section, we describe our procedure of build-
ing XWINO — a multilingual commonsense rea-
soning benchmark using Winograd Schema Chal-
lenge problems. We create it by combining several
monolingual collections for six languages, each
described in previously published works.

We intentionally do not use XCOPA (Ponti et al.,
2020) as it is aimed at a different problem: in-
stead of operating at the word level, the task of this
dataset is to connect the premise and one of two
hypotheses, both of which are complete sentences.
Because direct application of attention-based rea-
soning to sentence-level tasks is a non-trivial re-
search question, we leave it to future work.



4.1 Languages

For the English language, we work with the
data from the original WSC task2 (Levesque
et al., 2012), as well as the SuperGLUE bench-
mark (Wang et al., 2019a) and the Definite Pronoun
Resolution dataset (Rahman and Ng, 2012). For
French and Japanese, we use datasets published
by Amsili and Seminck (2017) and Shibata et al.
(2015) respectively. We also include the corre-
sponding part from the Russian SuperGLUE bench-
mark (Shavrina et al., 2020), a collection of Wino-
grad Schemas in Chinese from the WSC website3,
and the Portuguese version of WSC (Melo et al.,
2019) into our multilingual benchmark.

In addition, we attempted to use Mandarino-
grad (Bernard and Han, 2020) — a Mandarin Chi-
nese version of WSC. However, this dataset con-
tains questions instead of pronouns that need to be
resolved. As such, we were unable to incorporate
its contents without significantly changing the task.

4.2 Preprocessing and filtering

As the datasets for different languages were re-
leased in several different formats, in order to have
a unified evaluation framework, we needed to con-
vert them all to the same schema. Unfortunately,
due to the differences in task formalization we were
unable to convert certain examples without com-
pletely changing them; as a result, these examples
had to be removed from the dataset. Still, our main
priority was to maintain the same task format while
keeping as many examples as possible; to this end,
we fixed minor annotation inconsistencies by hand
wherever possible.

Below we describe the steps of our pipeline.
First, several examples had more than two can-
didate choices, i.e. more than one incorrect option
is given. We convert these examples into several bi-
nary choice problems and report the original dataset
sizes after executing this step. Next, the main issue
we faced was that the right answer is not included
as a substring of the input sentence. Often this can
be explained by missing articles, typos or differ-
ences in word capitalization. We attempt to fix all
such errors in these cases.

The resulting dataset sizes are listed in Table 1;
it can be seen that our conversion pipeline discards
approximately 29% of data. In the future, more

2Specifically, the WSC285 version.
3https://cs.nyu.edu/faculty/davise/

papers/WinogradSchemas/WSChinese.html

Language Before After Remaining, %

English 2605 2325 89.25
French 214 83 38.79
Japanese 1886 959 50.85
Russian 569 315 55.36
Chinese 18 16 92.28
Portuguese 285 263 88.89

Total 5577 3961 71.02

Table 1: Dataset sizes before and after filtering.

effort could be directed towards constructing a lin-
guistically diverse, large-scale and balanced multi-
lingual Winograd Schema dataset. Yet, as shown
in Section 5, XWINO already allows us to distin-
guish recent commonsense reasoning models by
their performance.

5 Experiments

Below we describe the experimental setup used
to evaluate cross-lingual transfer capabilities of
different approaches to commonsense reasoning
and report the results. Note that we also aim to
study the universal reasoning properties of attention
heads, and thus we do not evaluate our method on
common monolingual Winograd Schema datasets.

5.1 Setup

Models We use multilingual BERT (Devlin et al.,
2019) and XLM-R-Large (Conneau et al., 2020),
as these models are frequently used in other mul-
tilingual evaluation literature. The first model has
12 layers with 12 attention heads each, whereas
the second model is a 24-layer Transformer with
16 attention heads on each layer. We do not eval-
uate XLM-R-Base or multilingual translation en-
coders (Siddhant et al., 2020) because we take two
best-performing models according to the XTREME
benchmark (Hu et al., 2020).

For our method, we use an implementation of lo-
gistic regression from scikit-learn (Pedregosa et al.,
2011) with default hyperparameters as a linear clas-
sifier over attention weights.

Evaluation For unsupervised methods, we di-
rectly apply each method to each language subset
and report the classification accuracy. For super-
vised methods, we first choose a single language
for training and generate random train-validation-
test splits, leaving 10% of data both for validation
and testing subsets. For each language, we create 5

https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSChinese.html
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Model Train lang en fr ja ru zh pt Avg

Unsupervised

MLM prob. ranking - 53.6 53.0 52.5 51.8 31.3 50.2 52.8
Pseudo-perplexity - 53.0 54.2 49.5 53.7 56.3 49.4 52.0
MAS - 52.3 51.8 50.2 52.7 56.3 49.1 51.6

Supervised

Kocijan et al. (2019)

en - 52.5±4.1 51.4±0.8 51.2±1.1 48.8±9.3 51.2±1.5 51.0
fr 50.9±0.4 - 51.5±0.7 51.3±0.9 56.2±9.9 49.2±1.2 51.8
ja 51.0±0.7 50.8±2.2 - 50.1±1.0 55.0±6.8 49.9±1.1 51.4
ru 50.7±0.5 51.3±2.0 51.7±1.0 - 51.2±10.3 51.0±0.3 51.2
zh 50.9±0.2 50.1±1.6 50.8±0.4 50.5±0.0 - 53.0±1.4 51.1
pt 51.1±0.5 54.0±3.9 51.3±0.6 49.3±0.5 53.8±7.1 - 51.9

Ours

en - 53.7±1.6 52.2±0.4 60.1±0.4 51.2±4.7 53.9±0.4 54.2
fr 51.7±1.1 - 51.1±1.1 52.2±2.6 53.8±3.1 50.9±1.1 51.9
ja 52.7±0.3 55.4±0.8 - 58.0±1.2 50.0±4.0 51.3±1.3 53.5
ru 55.5±0.4 52.3±2.7 52.3±0.3 - 52.5±5.0 52.0±0.7 52.9
zh 49.8±2.0 48.2±4.5 50.5±1.4 50.3±4.9 - 49.0±1.4 49.6
pt 54.7±0.5 52.8±3.2 51.7±0.6 57.7±1.2 50.0±4.0 - 53.4

Table 2: Results for multilingual BERT, best result is denoted by bold font.

random train-validation splits to estimate the stan-
dard deviation of metrics, while keeping the same
test set to keep the results comparable. Addition-
ally, we test each trained model for a language on
all other languages in a zero-shot setting, reporting
averaged performance as well.

5.2 Baselines

To compare our approach with currently popu-
lar methods, we also evaluate a wide set of well-
performing approaches described in earlier works:

Unsupervised We use three entirely unsuper-
vised baselines inspired by prior work. For the first
approach, we replace the pronoun by the number
of [MASK] tokens equal to the length of each can-
didate answer and compare the MLM probabilities.
For the second approach, we replace the pronoun
with each of the answers and rank the candidates
by “pseudo-perplexity” (Salazar et al., 2020), in-
spired by the results of Trinh and Le (2018). Both
baselines use normalized scores with respect to the
candidate word length.

The third unsupervised baseline is Masked At-
tention Score (MAS), described in Klein and Nabi
(2019). Similarly to our method, this approach re-
lies on attention weights for prediction; however,
they are utilized differently and the model is unable
to discover an optimal subset of heads.

Supervised First, we evaluated the masked lan-
guage model finetuning approach suggested by the
authors of WinoGrande (Sakaguchi et al., 2020).
However, in our experiments there are no addi-

tional large-scale datasets; we found that with refer-
ence hyperparameters, the authors’ implementation
quickly overfits the training data for all languages
in our relatively small benchmark, achieving less
than 50% zero-shot accuracy on average.

In addition, we used the margin-based classifica-
tion approach described in (Kocijan et al., 2019).
This method achieves competitive results and out-
performs unsupervised baselines in most setups, so
we include it in our comparison.

5.3 Results

The results of our experiments for multilinual
BERT and XLM-R-Large are shown in Tables 2
and 3 respectively. It can be seen that despite using
only the attention weights as features, our method
can outperform unsupervised approaches and per-
forms competitively with a state-of-the-art super-
vised approach in several setups. Notably, the qual-
ity improves significantly when going from BERT
to XLM-R: this goes in line with previous work
on evaluation of cross-lingual encoders (Hu et al.,
2020). At the same time, the quality of our method
improves more significantly than of that suggested
by Kocijan et al. (2019): this may be explained by
a greater parameter count and a higher number of
attention heads with more distinct specializations.

5.4 Ablation study

Here we compare several algorithm versions listed
in Section 3.3. We train all models on the English
part of XWINO and evaluate on all other languages,
using validation subset performance as our target



Model Train lang en fr ja ru zh pt Avg

Unsupervised

MLM prob. ranking - 58.8 56.6 61.7 57.5 56.3 56.7 59.2
Pseudo-perplexity - 58.5 54.2 58.2 59.7 56.3 54.8 58.2
MAS - 57.2 56.6 53.9 58.1 50.0 53.6 56.2

Supervised

Kocijan et al. (2019)

en - 70.6±2.0 81.4±1.8 74.8±1.1 72.5±5.6 74.3±1.2 74.7
fr 59.6±0.5 - 65.8±0.2 58.9±0.3 56.2±0.0 56.7±0.9 59.4
ja 70.4±3.8 62.7±2.7 - 66.1±1.9 63.7±5.2 63.7±2.7 65.3
ru 67.1±4.8 62.2±4.2 69.2±3.2 - 56.2±0.0 61.0±4.3 63.1
zh 59.2±0.0 57.8±0.0 65.5±0.0 58.7±0.0 - 56.3±0.0 59.5
pt 67.1±3.6 61.2±2.2 69.4±3.1 65.6±3.7 60.0±3.4 - 64.6

Ours

en - 67.5±1.3 69.1±0.2 70.4±0.5 60.0±3.1 66.8±0.9 66.7
fr 66.1±0.7 - 63.3±0.8 67.0±1.2 60.0±5.0 61.4±1.2 63.6
ja 70.1±0.4 67.2±1.4 - 72.4±0.6 61.3±2.5 65.9±0.8 67.4
ru 68.7±0.5 65.8±2.7 65.7±0.5 - 63.7±4.7 64.4±0.8 65.7
zh 51.1±8.5 48.2±8.6 52.4±8.8 51.3±10.8 - 50.0±8.1 50.6
pt 68.9±0.6 67.0±1.6 68.1±0.4 69.5±0.2 63.7±4.7 - 67.4

Table 3: Results for XLM-R-Large, best result is denoted by bold font.

Method Valid fr ja ru zh pt Avg

Ours (Section 3.3) 55.4 53.7 52.2 60.1 51.2 53.9 54.2
Concat 53.0 54.9 52.3 56.3 53.8 53.9 54.2
Max pooling 53.6 52.3 52.3 59.9 50.0 51.6 53.2
Attn from pronoun 54.8 53.0 52.2 57.4 47.5 52.9 52.6

Table 4: Ablation study results for models trained on
the English subset; the best result is in bold.

metric. As the Table 4 demonstrates, each choice
leads to drops in performance, with the most in-
fluential being the choice of feature concatenation
instead of taking the difference and attention direc-
tion being the least important decision.

6 Analyzing the attention heads

In this section, we intend to analyze the reasons
behind competitive generalization performance of
our approach. It is known what individual atten-
tion heads sometimes play consistent and often
linguistically-interpretable roles (Voita et al., 2019).
We compare the subsets of heads learned on dif-
ferent languages and measure their impact on the
prediction quality.

6.1 Universal commonsense reasoning
For the first experiment, we rank the heads for
models trained on all languages with the XLM-
R4 representations by the absolute value of the
weight. Then, we consider the top-5 heads which
are ranked highest on average across all languages.
These common heads are located in the higher lay-
ers of the model, which was shown previously to

4The results for mBERT are available in Appendix B.

Figure 2: Averaged attention from the pronoun when
using top-5 common heads.

encode mainly semantic features (Raganato and
Tiedemann, 2018; Jo and Myaeng, 2020), which
intuitively corresponds to the tasks the model needs
to solve for pronoun resolution. Figure 2 shows the
average attention weights of these heads for each
word in several example sentences.

After we locate the most important common
heads, we train linear classifiers restricted to these
heads as features only for every language. To evalu-
ate the importance of head choice, we also provide
the performance of linear classifiers trained on a
fixed subset of 5 random heads. The results of this
experiment can be seen in Table 5; we observe that
using the same top-5 heads (only 1.3% of the to-
tal number) across all languages preserves or even



Train lang Heads en fr ja ru zh pt Avg

MAS (unsupervised)

-
All 57.2 56.6 53.9 58.1 50.0 53.6 56.2
Random 57.8 56.6 56.9 61.6 50.0 56.7 56.6
Common 65.8 62.7 64.9 67.3 68.8 64.3 65.6

Ours (supervised)

en
All

-
67.5 69.1 70.4 60.0 66.8 66.7

Random 62.0 64.4 67.4 60.0 65.4 63.9
Common 68.4 66.6 68.5 62.5 65.3 66.3

fr
All 66.1

-
63.3 67.0 60.0 61.4 63.6

Random 59.9 58.3 60.7 58.8 57.2 59.0
Common 66.7 63.8 66.7 63.7 63.1 64.8

ja
All 70.1 67.2

-
72.4 61.3 65.9 67.4

Random 66.0 62.2 68.0 59.4 65.3 64.2
Common 68.9 66.7 69.5 62.5 64.9 66.5

ru
All 68.7 65.8 65.7

-
63.7 64.4 65.7

Random 66.0 62.3 64.3 59.4 64.6 63.3
Common 68.0 64.6 66.5 63.7 64.6 65.5

zh
All 51.1 48.2 52.4 51.3

-
50.0 50.6

Random 59.4 54.7 58.6 61.0 58.0 58.3
Common 46.4 47.2 49.4 46.8 46.9 47.4

pt
All 68.9 67.0 68.1 69.5 63.7

-
67.4

Random 66.2 62.3 64.6 67.1 60.0 64.0
Common 67.9 65.5 66.0 68.2 63.7 66.3

Table 5: Performance of models trained with different subsets of XLM-R-Large attention heads.

improves the results. The only exception is Chi-
nese, which might not have enough labeled data
to extract a sufficient amount of task-specific in-
formation. It means that a very small subset of
attention weights is required to perform common-
sense reasoning in all evaluated languages. This
further supports the previous results on the analy-
sis of linguistic universals in cross-lingual models
(Chi et al., 2020; Wang et al., 2019b).

Moreover, restricting the subset of heads used in
the MAS baseline to those selected by the classi-
fiers significantly improves the quality of this un-
supervised method as well, nearly closing the gap
with the results obtained with supervision. This
leads us to the conclusion that initially the poor
performance of MAS might be caused by the sub-
optimal choice of attention heads; when the right
heads are selected, their weights do not impact the
predictions as significantly. Future unsupervised
methods for commonsense reasoning can use that
information to pay more attention to the choice of
heads, which is currently a less explored subject.

6.2 The impact of number of heads

In this experiment, we directly study the connection
between the number of heads and the quality of
predictions. Specifically, after training a model

Top-1 Top-2 Top-4 Top-16 Top-32 All
Heads used

0.625

0.650

0.675

0.700

0.725

A
cc

ur
ac

y

Other languages
Train
Test

Figure 3: Effect of the number of XLM-R attention
heads used when training on English data. Shaded ar-
eas show standard deviation across runs.

with a full set of attention heads, we order them
by the absolute value. Then, we retrain the model
while keeping only the top-N important heads.

Figure 3 displays the results of our study for
the English language; results for other languages
can be seen in Appendix C. From these results, we
find that although the training accuracy monotoni-
cally increases with the number of used attention
weights, the optimal amount of heads for cross-
lingual generalization is approximately equal to 16.
This number is optimal or near-optimal for other
languages as well, which might mean that as the



number of features grows, the model either simply
overfits the data or starts relying on features that
are not universal for all languages.

7 Conclusion

In this work, we offer a simple supervised method
to utilize pretrained language models for common-
sense reasoning. It relies only on the outputs of
self-attention and outperforms complete finetuning
in a zero-shot scenario.

We also create XWINO — a multilingual dataset
of Winograd schemas that contains tasks from En-
glish, French, Japanese, Russian, Chinese, and Por-
tuguese languages with the same specification. We
want to encourage research on commonsense rea-
soning in languages other than English and release
our benchmark to facilitate the development and
analysis of new methods for this problem.

Lastly, we demonstrate that the reasoning capa-
bilities of cross-lingual models are concentrated in
a small subset of attention heads located in higher
layers of the model. Furthermore, this subset of
heads is language-agnostic, which sheds light at
another facet of linguistic universals encoded in
models such as multilingual BERT and XLM-R.
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A In-language metrics for supervised
methods

Here, we provide the metrics of our method and
the finetuning baseline described by Kocijan et al.
(2019) that were obtained on the training, valida-
tion and test data for the same language that the
models were trained. Tables 6 and 7 demonstrate
the results: it can be seen that although our ap-
proach performs less well on the same language
that was used for training, the issue of overfitting
on train data is less noticeable, which might be the
reason for better zero-shot metrics.

Model Train lang Train Test

Kocijan et al. (2019)

en 100.0±0.0 47.8±2.3
fr 100.0±0.0 44.4±7.9
ja 100.0±0.0 46.9±1.0
ru 100.0±0.0 52.5±1.4
zh 100.0±0.0 20.0±44.7
pt 100.0±0.0 49.6±6.2

Ours

en 57.5±0.3 52.7±1.1
fr 54.5±3.2 33.3±17.2
ja 54.1±0.6 49.6±3.1
ru 60.8±0.9 46.2±2.3
zh 61.7±8.5 20.0±24.5
pt 57.1±0.4 43.0±6.9

Table 6: Train and test set metrics for supervised meth-
ods, multilingual BERT.

Model Train lang Train Test

Kocijan et al. (2019)

en 100.0±0.0 83.3±1.0
fr 100.0±0.0 44.4±11.1
ja 100.0±0.0 79.6±2.2
ru 100.0±0.0 60.0±3.4
zh 100.0±0.0 50.0±0.0
pt 100.0±0.0 55.6±5.2

Ours

en 71.6±0.4 67.2±1.2
fr 67.7±1.4 37.8±5.4
ja 71.2±0.2 65.6±1.7
ru 71.4±0.9 58.1±1.5
zh 73.3±3.3 20.0±24.5
pt 67.1±0.8 68.1±5.0

Table 7: Train and test set metrics for supervised meth-
ods, XLM-R Large.

B Analysis of common heads for
multilingual BERT

Table 8 shows the evaluation results of models us-
ing top-5 attention heads of multilingual BERT.
It can be seen that leaving only 5 heads out of
144 improves average accuracy in all cases and
per-language accuracy in 18/30 cases without any
significant decreases in quality.

C Impact of number of heads for other
languages

In this section, we analyze the changes in both su-
pervised and zero-shot performance for our method
that follow from changes in the number of used at-
tention heads. Figure 4 displays the results for
French, Japanese, Russian, and Portuguese lan-
guage; we omit the results for the Chinese language
due to high variance from the small training dataset
size. From this figure, we observe the same trend:
increasing the number of used heads past 16 can
favorably affect the accuracy on the training set,
but negatively impacts the resulting quality both on
the test set and for other languages.



Train lang Heads en fr ja ru zh Avg

MAS (unsupervised)

-
All 52.21 51.81 50.16 52.70 56.25 52.63

Common 56.60 53.01 51.82 60.00 50.00 54.29

Ours (supervised)

en
All - 53.33 52.05 58.92 52.88 54.29

Common - 54.53 52.52 59.78 52.25 54.77

fr
All 50.76 - 50.41 51.80 50.06 50.76

Common 51.01 - 50.38 51.73 50.62 50.94

ja
All 53.25 52.64 - 57.48 50.69 53.51

Common 55.54 51.84 - 58.51 50.56 54.12

ru
All 55.43 52.65 52.00 - 49.62 52.43

Common 56.20 52.92 51.66 - 49.75 52.63

zh
All 50.28 50.12 50.09 50.53 - 50.25

Common 50.82 50.14 50.24 51.30 - 50.62

Table 8: Performance of models trained with different sets of multilingual BERT attention heads.
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Figure 4: Effect of the number of used XLM-R attention heads on commonsense reasoning performance.


