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Abstract
Recently, knowledge graph (KG) augmented
models have achieved noteworthy success on
various commonsense reasoning tasks. How-
ever, KG edge (fact) sparsity and noisy
edge extraction/generation often hinder mod-
els from obtaining useful knowledge to rea-
son over. To address these issues, we propose
a new KG-augmented model: Hybrid Graph
Network (HGN). Unlike prior methods, HGN
learns to jointly contextualize extracted and
generated knowledge by reasoning over both
within a unified graph structure. Given the task
input context and an extracted KG subgraph,
HGN is trained to generate embeddings for the
subgraph’s missing edges to form a “hybrid”
graph, then reason over the hybrid graph while
filtering out context-irrelevant edges. We
demonstrate HGN’s effectiveness through con-
siderable performance gains across four com-
monsense reasoning benchmarks, plus a user
study on edge validness and helpfulness.1

1 Introduction

Commonsense reasoning (CSR) is essential for
natural language understanding (NLU) systems
to function effectively in the real world (Apperly,
2010). For example, to answer the question in Fig-
ure 1, one must already know that printing requires
using paper. Yet, since commonsense knowledge is
self-evident to humans, it is rarely stated in natural
language (Gunning, 2018). This makes it hard for
neural pre-trained language models (PLMs) (De-
vlin et al., 2019) to learn commonsense knowledge
from corpora alone (Marcus, 2018).

Unlike raw text corpora, knowledge graphs
(KGs) can provide structured commonsense
facts (edges) of the form (concept1, relation,

concept2) (Speer et al., 2017). Hence, many re-
cent CSR models augment the PLM with a KG,

1Our code and data can be found at https://github.
com/INK-USC/HGN.

Figure 1: KG-Augmented Commonsense QA. Pre-
dicting the correct answer (“use paper”) requires com-
monsense facts like (print, Requires, paper)

and (paper, HasProperty, expensive), which
are not given in the question and candidate an-
swers. HGN uses facts extracted from the KG, e.g.,
(print, RelatedTo, use), but also generates
new facts, eventually upweighting relevant ones, e.g.,
(print, Requires, use paper) and (paper,

HasProperty, expensive), while downweighting
irrelevant ones, e.g., (use, ?, expensive).

allowing such KG-augmented models to make pre-
dictions via multi-hop reasoning over the KG (Lin
et al., 2019; Bosselut and Choi, 2019).

Despite the growing success of KG-augmented
models, obtaining helpful KG facts for a given
task instance remains challenging. Existing mod-
els assume using either KG-extracted edges (Lin
et al., 2019; Ma et al., 2019; Feng et al., 2020; Ya-
sunaga et al., 2021), PLM-generated edges (to ad-
dress KG edge sparsity) (Bosselut and Choi, 2019),
or a late fusion of both (Wang et al., 2020) is suf-
ficient. Both extraction and generation can pro-
duce unhelpful edges, so the model must decide
which edges to focus on during reasoning. Since
extracted and generated edges are derived from
the same set of concepts (nodes), modeling the in-
teractions between extracted and generated edges
jointly within a shared KG structure could provide
stronger signal for identifying contextually relevant
edges. However, current models do not leverage
this information.

https://github.com/INK-USC/HGN
https://github.com/INK-USC/HGN
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In response, we propose a new KG-augmented
model: Hybrid Graph Network (HGN). Unlike
prior models, HGN learns to jointly contextualize
extracted and generated knowledge by reasoning
over both within a unified graph structure. Given
the task input (i.e., context) and an extracted KG
subgraph, HGN is trained to generate embeddings
for the subgraph’s missing edges to form a “hybrid”
graph, then reason over the graph (to update model
parameters) while filtering out context-irrelevant
edges. HGN achieves this primarily through edge
reweighting, which downweights irrelevant edges,
and edge-weighted message passing, which attenu-
ates irrelevant edges’ impact on reasoning.

Our extensive experiments demonstrate that
HGN improves performance over all baselines
across four CSR benchmarks. In particular, among
comparable methods, HGN ranks first on the Com-
monsenseQA (Talmor et al., 2019) and Open-
bookQA (Mihaylov et al., 2018) leaderboards. Plus,
our user studies show that humans find HGN-
filtered edges to be more valid and helpful than the
heuristically extracted edges used in prior work.

2 Problem Statement

We consider CSR tasks, like question answering
(QA), which can benefit from commonsense KGs.
To solve CSR tasks, we focus on KG-augmented
models, where a PLM is augmented with a com-
monsense KG. Given a CSR task, let x be the task’s
text input, f be the model, and f(x) be the model
output. We denote a KG as G = (V,R, E). V , R,
and E are the sets of nodes (concepts), relations,
and edges (facts), respectively, in the KG. An edge
is a directed triple of the form e = (h, r, t) ∈ E ,
where h ∈ V is the head node, t ∈ V is the tail
node, and r ∈ R is the relation between h and t.
Let [·, ·] denote concatenation of text or vectors.

As illustrated in Figure 2, a KG-augmented
model f has three main components: text encoder
ftext, graph encoder fgraph, and scoring function
fscore. First, s = ftext(x;θtext) is the encoding of
x, where ftext is usually a Transformer PLM. Sec-
ond, as supporting evidence, a x-specific graph
G′ = (V ′,R′, E ′) is constructed from G (Figure 1).
Typically, this is done via heuristic extraction by
selecting V ′ ⊆ V as the concepts mentioned in
x, R′ ⊆ R as the relations between concepts in
V ′, and E ′ ⊆ E as the edges involving V ′ and
R′. If G does not provide enough knowledge to
build a good G′, then new edges are sometimes

Figure 2: High-level schematic of a typical KG-
augmented model for CSR. In KG-augmented mod-
els, text encoder ftext tends to be a Transformer PLM,
and scoring function fscore is usually an MLP. Mean-
while, KG-augmented models generally vary more in
their graph encoder fgraph and graph construction.

added to G′ using a PLM-based generator (Wang
et al., 2020). We call G′ the contextualized KG.
g = fgraph(G′, s;θgraph) is then the joint encod-
ing of G′ and s. Third, the model output is com-
puted as f(x) = fscore([s,g];θscore), where fscore
is usually a multilayer perceptron (MLP). Exist-
ing KG-augmented models mainly differ in their
design of fgraph, reasoning over the KG through
message passing (Schlichtkrull et al., 2018a; Feng
et al., 2020; Yasunaga et al., 2021) or edge/path
aggregation (Lin et al., 2019; Bosselut and Choi,
2019; Ma et al., 2019).

While KG-augmented models can be applied to
any CSR task involving KGs (e.g., natural language
inference), we consider multi-choice QA in this
work. Given a question q and set of candidate
answers {ai}, the QA model’s goal is to predict a
plausibility score ρ(q, a) for each a ∈ {ai}, so that
the highest score is predicted for the correct answer.
To use KG-augmented models for commonsense
QA, we set x = [q, a] and ρ(q, a) = f(x).

3 Hybrid Graph Network (HGN)

3.1 Overview

As illustrated in §2 and Figure 2, given question-
answer pair (q, a) for an instance of the multi-
choice QA task, the KG-augmented QA model
first obtains a (q, a)-contextualized KG G′ via the
full KG G. Edges in G′ can be extracted directly
from G or generated using a PLM-based generator
(Wang et al., 2020; Bosselut et al., 2019). Then, the
model transforms (q, a) and G′ into text encoding s
and graph encoding g, respectively. Finally, s and
g are used to predict (q, a)’s plausibility.

However, a contextualized KG may have low
knowledge recall or precision, hindering the QA
model’s access to relevant knowledge. Low re-
call can stem from missing edges in G, low pre-
cision can be the result of bad annotations in G,
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Figure 3: Overview of HGN. After building a hybrid graph of extracted and generated edges (§3.2), HGN reasons
over the hybrid graph by updating the node embeddings V, hybrid edge embeddings E, and adjacency matrix A
at each layer ` (§3.3). Darker edges indicate higher weights. Red variables are updated in the previous step.

and both can be caused by noisy edge extraction
or generation when building G′. HGN addresses
these issues by reasoning over both extracted and
generated edges within a unified graph structure.
To improve recall, HGN generates new edges via
a PLM-based generator, then initializes a hybrid
contextualized KG containing both extracted and
generated edges. Note that edge generation is gen-
erally (q, a)-agnostic and may produce irrelevant
edges that hurt knowledge precision. To improve
precision, HGN learns to reweight edges in the hy-
brid graph and reason over the hybrid graph via
edge-weighted message passing. This is akin to
learning the hybrid graph’s structure and reduces
the impact of irrelevant edges on reasoning. Ad-
ditionally, to further encourage downweighting of
noisy edges during reasoning, HGN is trained with
entropy regularization on the learned edge weights.

The overall learning objective of HGN is defined
as L = Ltask + βLedge, where Ltask is the loss for
the downstream task (in our work, QA), Ledge is
the entropy regularization term for edge weights,
and β ≥ 0 is a loss weight hyperparameter. In the
following subsections, we first explain how the con-
textualized KG G′ is constructed as a hybrid graph,
including its node embeddings V, hybrid edge em-
beddings E, and adjacency matrix A0 (§3.2). Next,
we show how HGN uses edge-weighted message
passing to update V, E, and A0 for L layers (Fig-
ure 3), yielding a refined adjacency matrix AL of
learned edge weights (§3.3). Finally, we describe
how Ltask is computed using s and g, while Ledge
is calculated using AL (§3.4).

3.2 Hybrid Graph Construction

Node Embeddings. The first step of retrieving
knowledge from G is concept grounding, which
involves identifying text spans in (q, a) that match
nodes in V . We define V ′ as the set of all con-
cepts mentioned in (q, a), where V ′q = {vi}

nq

i=1

and V ′a = {vi}na
i=1 are the question and answer

concepts, respectively. Each node vi ∈ V ′ is rep-
resented by an embedding vi ∈ V, which can
be initialized using BERT (Devlin et al., 2019) or
TransE (Bordes et al., 2013).

Hybrid Edge Embeddings. In G′, we loosen the
definition of an edge to be e(i,j) = (vi, vj) ∈ E ′.
We build fully-connected edges between question
and answer nodes in G′. The set of edges in G′ is
thus defined as E ′ = (V ′q ×V ′a)∪ (V ′a ×V ′q). After
concept grounding, we need an edge embedding
e(i,j) ∈ E for each edge e(i,j). Let R be the re-
lation embeddings for all relations inR, obtained
using TransE. Each extracted edge (vi, r, vj) ∈ E
is thus initialized in G′ as e(i,j) = r ∈ R. How-
ever, due to edge sparsity, many edges do not have
labeled relations and cannot be initialized this way.

Meanwhile, despite PLMs’ limitations in com-
monsense, they have shown some ability to en-
code commonsense knowledge (Davison et al.,
2019; Petroni et al., 2019) and aid KG comple-
tion (Malaviya et al., 2019; Bosselut et al., 2019;
Wang et al., 2020). Hence, we generate edge em-
beddings for all unlabeled edges by feeding each
unlabeled edge into a GPT-2 (Radford et al., 2019)
based generator fgen(·, ·). This is further explained
in the “Edge Embedding Generation” paragraph.

In summary, edge embeddings are computed in
a hybrid way: (1) If there exists r ∈ R such that
(vi, r, vj) ∈ E , then e(i,j) = r ∈ R. (2) Otherwise,
e(i,j) = fadapt(fgen(vi, vj)), where fadapt(·) is an
MLP used to transform fgen(vi, vj) into the same
space as r.

Edge Embedding Generation. Inspired by re-
cent work in PLM-based commonsense KG com-
pletion (Bosselut et al., 2019; Malaviya et al., 2019;
Wang et al., 2020), we frame edge generation as
text generation. First, for each extracted edge
(h, r, t) ∈ E , we first tokenize its node pair (h, t)
and relation label r. Let h̃, r̃, and t̃ be the respective
token sequences of h, r, and t. Also, let $ be the
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special separator token. Next, for each tokenized
extracted edge, we train a GPT-2 model (Radford
et al., 2019) to autoregressively generate the con-
catenated sequence [h̃, $, t̃, $, h̃, r̃, t̃].

During inference, we only have unlabeled edges
(vi, vj) ∈ E ′, with no r. Thus, for each (vi, vj),
GPT-2 is given sinput = [ṽi, $, ṽj , $] and asked to
generate the missing tokens spred = [ṽi, r̃, ṽj ]. Let
[x1, x2, ..., xT ] = [sinput, spred]. The edge embed-
ding for (vi, vj) is then computed as fgen(vi, vj) =
1
T

∑T
i=1 hi, where hi is the GPT-2 hidden state for

xi. See Appendix §A for more details.
Alternatively, we consider another edge gener-

ation approach proposed by Wang et al. (2020).
Here, fgen(·, ·) is trained to generate a relational
path connecting vi to vj , then pool the path into an
edge embedding. The rationale for this approach is
that such paths have been shown to contain useful
semantic information about the relation between vi
and vj (Neelakantan et al., 2015; Das et al., 2017;
Wang et al., 2020).

Adjacency Matrix. Before edge generation,
G′ has binary adjacency matrix Aextract, where
A(i,j) = 1⇔ ∃r, s.t. (vi, r, vj) ∈ E . After getting
embeddings for all edges (vi, vj) ∈ E ′, Aextract

becomes A0, a denser binary adjacency matrix in
which A0

(i,j) = 1⇔ (vi, vj) ∈ E ′.

3.3 Hybrid Graph Reasoning

The procedure described in §3.2 yields a hybrid
graph, containing unweighted edges between all
question-answer node pairs. Constructing this hy-
brid graph may improve edge recall, but does not
address precision. Some edges in the initial hybrid
graph may be irrelevant to the question-answer pair,
either due to noisy edge extraction or generation.
HGN is thus designed to downweight irrelevant
edges by converting the unweighted graph into a
weighted one, then learning to reweight all hybrid
edges during reasoning (Figure 3).

Learnable Adjacency Matrix. Although A0 is
a binary adjacency matrix, HGN populates it with
learned edge attention weights and iteratively up-
dates them over L layers of reasoning. We de-
note the adjacency matrix at layer ` as A`, where
0 ≤ A`

(i,j) ≤ 1. Updating A` can be viewed as
softly contextualizing the hybrid graph’s structure
with respect to (q, a).

Edge-Weighted Message Passing. Following
the general Graph Network (GN) formulation pro-

posed by Battaglia et al. (2018), HGN’s graph
reasoning module consists of layer-wise node-to-
edge (v → e) and edge-to-node (e → v) mes-
sage passing functions. However, we equip HGN
with a modified version of GN’s edge-to-node mes-
sage passing function, in which each edge’s weight
is used to rescale information flow on that edge.
Intuitively, an edge’s weight signifies the edge’s
relevance for reasoning about the given task in-
stance. We also use text encoding s as global con-
text throughout message passing.

Formally, HGN’s update rule at layer ` is:

v → e : h`
(i,j) = f `v→e

([
h`−1
i ,h`−1

j ,h`−1
(i,j), s

])
;

w`
(i,j) = f `w

([
h`−1
(i,j), s

])
;

A`
(i,j) =

e
w`

(i,j)∑
(s,t)∈E ′ e

w`
(s,t)

,

e→ v : u`
(i,j) = f `u

([
h`−1
i ,h`

(i,j)

])
;

h`
j = f `e→v

(∑
i∈Nj

A`
(i,j)u

`
(i,j)

)
.

(1)

Nj is the set of vj’s incoming neighbors; f `v→e, f `w,
f `u and f `e→v are MLPs; h0

(i,j) = e(i,j) is the initial
embedding for edge (vi, vj); and h0

i = vi is the
initial embedding for node vi.

In node-to-edge message passing, the embed-
ding of each edge (vi, vj) ∈ E ′ is updated as
h`
(i,j), a function of (vi, vj)’s constituent nodes

and the given context s. Through s, the hybrid
graph is strongly contextualized with respect to
(q, a). Then, h`

(i,j) is used to compute edge score
w`
(i,j), which measures the edge’s relevance to s.

Each edge score is globally normalized across all
edges in the graph to produce edge attention weight
A`

(i,j), so that low-scoring edges are softly pruned
by receiving close-to-zero weight.

We use global edge attention (i.e., normalizing
across E ′) instead of local edge attention (i.e., nor-
malizing across Nj) because local edge attention
assumes at least one edge in Nj is relevant, which
may not be true. For example, given an irrelevant
or incorrectly grounded concept, none of its edges
will be helpful, and so all nodes in its neighborhood
should be excluded from influencing the reasoning
process. To demonstrate the advantage of global
edge attention, we empirically compare our de-
fault HGN architecture to an HGN variant based
on Graph Attention Network (GAT) (Velickovic
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et al., 2018), which uses local edge attention, in our
experiments.

In edge-to-node message passing, the embedding
of each node vj ∈ V ′ is updated as h`

j , a function
of vj’s neighboring edges. For each edge neighbor,
edge weight A`

(i,j) is used to rescale the edge’s
influence on vj’s embedding update.

3.4 Learning Objective
Task Loss. After L layers of message passing,
we obtain node embeddings {hL

i | i : vi ∈ V ′}
and edge embeddings {hL

(i,j) | (i, j) : (vi, vj) ∈
E ′}. Node embeddings are aggregated into vagg
via attentive pooling with s as the query vector.
Edge embeddings are aggregated into eagg via edge-
weighted sum pooling. The final graph encoding is
then given as g = [vagg, eagg]. The probability of
a being the answer to q is calculated as ρ̂(q, a) ∝
exp(ρ(q, a)), where ρ(q, a) = fscore([s,g];θscore).
We use cross-entropy loss for the QA classification
task, so the loss for each (q, a) with label y is:

Ltask (ρ̂(q, a;θ)), y) = −y log ρ̂(q, a;θ). (2)

Entropy Regularization. To encourage the
model to be decisive during edge reweighting,
we use a regularization term to penalize non-
discriminative edge weights. In an extreme case,
a blind model will assign the same weight to all
edges, degenerating G′ into an unweighted graph.
This is a failure mode, since G′ is likely to contain
mostly irrelevant edges, and we want the model to
focus on the helpful edges. Therefore, via Ledge,
we train the model to minimize the entropy of the
edge weight distribution (i.e., make the distribution
more skewed), in order to maximize the informa-
tiveness of the predicted edge weights. Lower en-
tropy means the model has higher certainty about
edges’ relevance to the given task instance, such
that the model will discriminatively judge some
edges as being much more relevant than others.
Ledge is computed as:

Ledge(A
L(q, a)) = −

∑
(i,j):(vi,vj)∈E ′

AL
(i,j) logA

L
(i,j).

(3)

Joint Learning. We jointly optimize Ltask and
Ledge, so graph reasoning and structure can be
jointly learned. The full learning objective is:

L(θ) =
∑

(q,a,y)∼Xtrain

[
Ltask (ρ̂(q, a)), y) + β · Ledge(A

L(q, a))
]
,

(4)

where θ = {θtext,θgraph,θscore} is the set of all
learnable parameters, and Xtrain is the training set.
We train our model end-to-end by minimizing L(θ)
with the RAdam (Liu et al., 2020) optimizer.

4 Experiments

4.1 Experimental Setup

We evaluate our proposed model on four multiple-
choice commonsense QA datasets: Common-
senseQA (Talmor et al., 2019), CODAH (Chen
et al., 2019), OpenBookQA (Mihaylov et al.,
2018) and QASC (Khot et al., 2020) (details in
Appendix §B). We use ConceptNet (Speer et al.,
2017), a commonsensense knowledge graph, as
G. For text encoder ftext, we experiment with
BERT-Base, BERT-Large (Devlin et al., 2019) and
RoBERTa(-Large) (Liu et al., 2019) to validate
our model’s effectiveness over different text en-
coders. For OpenbookQA and QASC, retrieving
related facts from the provided corpus plays an im-
portant role in boosting the model’s performance.
Therefore, we build our graph reasoning model on
top of retrieval-augmented methods on the leader-
board: “AristoRoBERTa”2 for OpenBookQA and
“RoBERTa (2-step IR)”3 for QASC. In this way, we
can study if strong retrieval-augmented methods
can still benefit from KG knowledge and our HGN
framework.

4.2 Compared Methods

We compare our model with a series of KG-
augmented methods and different graph encoders:

Models Using Extracted Facts. We consider
seven models that only use extracted facts.
RN (Santoro et al., 2017) builds the graph with
the same node set as our method but extracted
edges only. The graph vector is calculated as
g = Pool({MLP([vi, e(i,j),vj ]) | (vi, vj) ∈ E ′}).
GN (Battaglia et al., 2018) presents a general for-
mulation of GNNs. We instantiate it with the lay-
erwise propagation rule defined in Equation 1. It
differs from our HGN in that: (1) it only considers
extracted edges; (2) all edge weights are fixed to
1. MHGRN (Feng et al., 2020) generalizes GNNs
with multi-hop message passing. GAT (Velick-
ovic et al., 2018) adopts attention mechanism to

2https://leaderboard.allenai.org/open_
book_qa/submission/blcp1tu91i4gm0vf484g

3https://leaderboard.allenai.org/qasc/
submission/bolaun0ghifmkohgvhr0

https://leaderboard.allenai.org/open_book_qa/submission/blcp1tu91i4gm0vf484g
https://leaderboard.allenai.org/open_book_qa/submission/blcp1tu91i4gm0vf484g
https://leaderboard.allenai.org/qasc/submission/bolaun0ghifmkohgvhr0
https://leaderboard.allenai.org/qasc/submission/bolaun0ghifmkohgvhr0


4043

Methods BERT-Base BERT-Large RoBERTa

60% Train 100% Train 60% Train 100% Train 60% Train 100% Train

LM Finetuning∗ 52.06 (±0.72) 53.47 (±0.87) 52.30 (±0.16) 55.39 (±0.40) 65.56 (±0.76) 68.69 (±0.56)

RN∗ (Santoro et al., 2017) 54.43 (±0.10) 56.20 (±0.45) 54.23 (±0.28) 58.46 (±0.71) 66.16 (±0.28) 70.08 (±0.21)
RN + Link Prediction∗ - - 53.96 (±0.56) 56.02 (±0.55) 66.29( ±0.29) 69.33 (±0.98)
RGCN∗ (Schlichtkrull et al., 2018b) 52.20 (±0.31) 54.50 (±0.56) 54.71 (±0.37) 57.13 (±0.36) 68.33 (±0.85) 68.41 (±0.66)
GAT (Velickovic et al., 2018) 53.05 (±0.37) 56.51 (±0.74) 55.80 (±0.53) 58.18 (±1.07) 69.63 (±0.42) 71.20 (±0.72)
GN (Battaglia et al., 2018) 53.67 (±0.45) 55.65 (±0.51) 54.78 (±0.61) 57.81 (±0.67) 68.78 (±0.67) 71.12 (±0.45)
GconAttn∗ (Wang et al., 2019a) 51.36 (±0.98) 54.41 (±0.50) 54.96 (±0.69) 56.94 (±0.77) 68.09 (±0.63) 69.88 (±0.47)
KagNet∗ (Lin et al., 2019) - 56.19 - 57.16 - -
MHGRN∗ (Feng et al., 2020) 54.12 (±0.49) 56.23 (±0.82) 56.76 (±0.21) 59.85 (±0.56) 68.84 (±1.06) 71.11 (±0.81)
PathGenerator∗ (Wang et al., 2020) 54.44 (±0.42) 56.99 (±0.41) 57.53 (±0.19) 59.07 (±0.30) 69.46 (±0.23) 72.68 (±0.42)

HGN (w/ PathGen edges) 55.68 (±0.29) 57.77 (±0.39) 58.19 (±0.27) 60.89 (±0.19) 70.95 (±0.21) 73.41 (±0.31)
HGN (w/ RelGen edges) 55.72 (±0.32) 58.01 (±0.29) 58.19 (±0.11) 61.11 (±0.21) 71.10 (±0.11) 73.64 (±0.30)

Table 1: Accuracy on CommonsenseQA inhouse test set. Both our model variants significantly improve over all
baselines. We use the same inhouse split as Lin et al. (2019). For baselines with ∗, we use the reported numbers
from Feng et al. (2020) and Wang et al. (2020) if available. Mean and standard deviation of four seeds are presented
for all models except KagNet.

reweight edges locally in each node’s neighbor-
hood. We implement it by replacing the graph edge
attention with local edge attention and only consid-
ering Ltask during training. RGCN (Schlichtkrull
et al., 2018a) extends Graph Convolutional Net-
works (GCNs) (Kipf and Welling, 2017) with
relation-specific transition matrices during message
passing. It operates on the same graph as RN. The
graph vector is calculated as g = Pool({hL

i | vi ∈
V }). GconAttn (Wang et al., 2019b) softly aligns
the nodes in question and answer and do pooling
over all matching nodes to get g. KagNet (Lin
et al., 2019) uses an LSTM to encode relational
paths between question and answer concepts and
pool over the path embeddings for graph encoding.

Models Using Extracted and Generated Facts.
We consider two models that use both extracted
facts and generated facts. RN + Link Predic-
tion differs from RN by only considering the gen-
erated relation (predicted using TransE (Bordes
et al., 2013)) between question and answer con-
cepts. PathGenerator (Wang et al., 2020) learns
a path generator from paths collected through ran-
dom walks on the KG. The learned generator is
used to generate paths connecting question and an-
swer concepts. g is calculated as the concatenation
of the pooled vector over the generated paths and
the pooled vector over the extracted paths.

Our Model’s Variants. As described in §3.2, the
edge embedding can be computed either as a re-
lation embedding or a path embedding. We name
these two variants as HGN (w/ RelGen edges) and
HGN (w/ PathGen edges) respectively.

Methods Single Ensemble

ALBERT+DESC-KCR (Xu et al., 2020) 80.7 83.3
ALBERT+KD 80.3 80.9
ALBERT+KCR 79.5 -
Unified QA (Khashabi et al., 2020) 79.1 -
ALBERT+KRD 78.4 -
T5-3B (Raffel et al., 2020) 78.1 -
ALBERT+HGN (w/ RelGen edges) 77.3 80.0
TeGBERT 76.8 -
ALBERT+PathGenerator (Wang et al., 2020) 75.6 78.2
ALBERT (Lan et al., 2020) - 76.5

Table 2: Leaderboard of CommonsenseQA. HGN
ranks first among comparable systems, especially
achieving remarkable improvement over PathGenera-
tor (Wang et al., 2020).

4.3 Results

Performance Comparisons. Tables 1, 3, 4
show performance comparisons between our mod-
els and baseline models on CommonsenseQA, CO-
DAH, OpenBookQA and QASC. We clearly find
that models with stronger text encoders perform
better (i.e. RoBERTa > BERT-Large > BERT-
Base). For all text encoders, our HGN shows con-
sistent improvement over baseline models on all
datasets. The improvement over all baselines are
tested to be statistically significant under most set-
tings, demonstrating the effectiveness of HGN both
with and without retrieved evidence.

We also submit our best model to leader-
boards for CommonsenseQA and OpenBookQA.
For CommonsenseQA (Table 2), our HGN ranks
first among comparable approaches and shows re-
markable improvement over PathGenerator (Wang
et al., 2020) and the LM Finetuning approach
(ALBERT (Lan et al., 2020)). Higher-ranking
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(a) CommonsenseQA (RoBERTa). (b) OpenBookQA (AristoRoBERTa). (c) Ablations on model variants.

Figure 4: Low-resource and ablation studies. (a)(b) Performance of HGN and baseline models with different
amounts of training data; (c) Performance of different model variants.

Methods BERT-Large RoBERTa

LM Finetuning 65.74 83.14

RN (Santoro et al., 2017) 64.59 82.45
RGCN (Schlichtkrull et al., 2018b) 65.56 82.42
GAT (Velickovic et al., 2018) 65.88 82.78
GN (Battaglia et al., 2018) 65.52 82.06
GconAttn (Wang et al., 2019a) 65.17 82.35
MHGRN (Feng et al., 2020) 65.92 83.07
PathGenerator (Wang et al., 2020) 64.67 82.27

HGN (w/ PathGen edges) 66.21 84.32
HGN (w/ RelGen edges) 66.75 84.08

Table 3: Test accuracy on CODAH. Both our model
variants consistently improve over all baselines. We
use the official split for 5-fold cross validation. Mean
accuracy on 5 folds are presented.

models either use stronger text encoders or lever-
age additional data resources. Specifically, Uni-
fiedQA (Khashabi et al., 2020) and T5-3B (Raf-
fel et al., 2020) are based on T5. They have 11B
and 3B parameters respectively, making them im-
practical to be finetuned in an academic setting.
ALBERT+DESC-KCR (Xu et al., 2020) and AL-
BERT+KD additionally use concept definitions
from dictionaries. ALBERT+DESC-KCR and AL-
BERT+KCR leverage “question concept” anno-
tations, which are used during the construction
of the CommmonsenseQA dataset and allow the
model to learn shortcuts that don’t generalize to
other datasets. ALBERT+KRD retrieve sentences
from OMCS corpus (Liu and Singh, 2004) as input.
These methods are therefore not comparable with
our model. For OpenBookQA (Table 5), our model
ranks first among all models using AristoRoBERTa
as the text encoder.

Training with Less Labeled Data. Figure 4
(a)(b) show the results of our model and baselines
when trained with different portions of the train-
ing data on CommonsenseQA and OpenBookQA.

Datasets OpenBookQA QASC
Base Models AristoRoBERTa RoBERTa (2-step IR)

LM Finetuning∗ 77.40 (±1.64) 73.34 (±0.71)

RN∗ (Santoro et al., 2017) 78.05 (±0.77) 72.77 (±1.50)
RN + Link Prediction∗ 77.25 (±1.11) -
RGCN∗ (Schlichtkrull et al., 2018b) 74.60 (±2.53) 72.23 (±1.36)
GAT (Velickovic et al., 2018) 78.20 (±1.22) 72.61 (±0.93)
GN (Battaglia et al., 2018) 77.25 (±0.91) 72.53 (±0.70)
GconAttn∗ (Wang et al., 2019a) 71.80 (±1.21) 72.72 (±1.66)
MHGRN (Feng et al., 2020) 77.75 (±0.38) 73.24 (±0.45)
PathGenerator∗ (Wang et al., 2020) 79.15 (±0.78) 72.96 (±0.68)

HGN (w/ PathGen edges) 80.05 (±0.54) 74.10 (±0.42)
HGN (w/ RelGen edges) 80.15 (±0.38) 74.27 (±0.31)

Table 4: Test accuracy on OpenBookQA and QASC
with retrieval-augmented methods as base models.
Both our model variants greatly improve over all base-
lines except HGN (w/ PathGen edges) over MHGRN.
For OpenbookQA baselines with ∗, we use reported
numbers from Wang et al. (2020). Mean and standard
deviation of four seeds are presented.

Our model gets better test accuracy under all set-
tings. On CommonsenseQA without retrieved
evidence, the improvement over the knowledge-
agnostic baseline (LM Finetuning) is generally
more significant with less training data, which sug-
gests that incorporating external knowledge is help-
ful in the low-resource setting.

Study on More Model Variants. To better un-
derstand the model design, we experiment with
three variants of HGN (w/ RelGen edges) on Com-
monsenseQA and OpenBookQA. HGN w/o state-
ment vector doesn’t consider s in Equation 1,
which isolates the graph encoder from the text
encoder. HGN w/o Ledge does not consider the
entropy regularization term and thus does not pe-
nalize non-discriminative edge weights. HGN w/o
edge weights reasons over an unweighted graph
with hybrid features, which means edge weights
are all fixed to 1 during training. Figure 4 (c) shows
the results of the ablation study. “HGN” outper-
forms “HGN w/o Ledge”, suggesting the usefulness
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Methods Text Encoder Test Acc

UnifiedQA (Khashabi et al., 2020) T5-11B 87.2
T5-11B + KB T5-11B 85.4
T5-3B (Raffel et al., 2020) T5-3B 83.2
PathGenerator (Wang et al., 2020) ALBERT 81.8
HGN (w/ RelGen edges) AristoRoBERTa 81.4
AristoRoBERTa + KB AristoRoBERTa 81.0
MHGRN (Feng et al., 2020) AristoRoBERTa 80.6
PathGenerator (Wang et al., 2020) AristoRoBERTa 80.2
KF + SIR (Banerjee and Baral, 2020) RoBERTa 80.2
AristoRoBERTa AristoRoBERTa 80.2

Table 5: Leaderboard of OpenBookQA. Our
HGN ranks first among all submissions using Aris-
toRoBERTa as the text encoder.

Contextualized Graph GN (Aextract) HGN (AL)

Number of Edges 3.65 (±2.73) 4.38 (±3.24)
Number of Valid Edges 2.67 (±1.95) 3.15 (±1.98)
Percentage of Valid Edges 71.64% 78.51%
Average Helpfulness Score of Edges 0.90 (±0.50) 1.16 (±0.51)
Prune Rate - 22.84%

Table 6: User studies on learned graph structures.
30 pairs of contextualized graphs output by GN and
HGN are evaluated by 5 annotators.

of our proposed entropy regularization. Compar-
ing “HGN w/o statement vector” with “HGN”, we
find that accessing context information is also im-
portant for graph reasoning, which means informa-
tion propagation and edge weight prediction should
be conducted in a context-aware manner. HGN
also improves over “HGN (w/o edge weights)”,
indicating the effectiveness of conducting context-
dependent pruning.

4.4 User Study on Learned Structures

To assess HGN’s ability to refine graph structure,
we compare the graph structure before and after be-
ing processed by HGN. Specifically, we sample 30
questions with its answer from CommonsenseQA’s
development set and ask 5 human annotators to
evaluate the graph output by GN (with adjacency
matrix Aextract and extracted facts only) and by
HGN (with adjacency matrix AL). We manually
binarize AL by removing edges with weight lower
than 0.01.

Given a graph, for each edge (fact), annotators
are asked to rate its validness and helpfulness.
The validness score is rated as a binary value in a
context-agnostic way: 0 (the fact does not make
sense), 1 (the fact is generally true). The helpful-
ness score measures if the fact is helpful for solving
the question and is rated on a 0 to 2 scale: 0 (the fact
is unrelated to the question and answer), 1 (the fact

is related but doesn’t directly lead to the answer), 2
(the fact directly leads to the answer). Note that the
percentage of valid edges can be understood as the
precision of graph edges. For a given instance, the
number of valid edges is proportional to the recall
of the edges. We also include another metric named
“prune rate” calculated as: 1− # edges in binarized AL

# edges in A0 ,
which measures the portion of edges assigned very
low weights (softly pruned) during training and is
only applicable to HGN.

The mean ratings for 30 pairs of (GN, HGN)
graphs by 5 annotators are reported in Table 6.
The Fleiss’ Kappa (Fleiss, 1971) is 0.51 (moder-
ate agreement) for validness and 0.36 (fair agree-
ment) for helpfulness. The graph refined by HGN
has both more edges and denser valid edges com-
pared to the extracted one. The refined graph also
achieves a higher average helpfulness score. These
all indicate that our HGN learns a superior graph
structure with more helpful edges and fewer noisy
edges, which improves over previous works that
rely on extracted and static graphs. Detailed cases
can be found in Appendix §C.

5 Related Work

Commonsense QA. Commonsense QA is chal-
lenging because the required commonsense knowl-
edge is seldom given in the question-answer con-
text or encoded in the PLM’s parameters. Thus,
many works obtain this knowledge from external
sources (e.g., KGs, corpora). While Lv et al. (2020)
show that KGs and corpora can provide comple-
mentary knowledge, our paper focuses on improv-
ing the use of KG knowledge. KG knowledge
can be acquired in different ways, either from KG-
extracted edges (Lin et al., 2019; Ma et al., 2019;
Feng et al., 2020; Yasunaga et al., 2021), PLM-
generated edges (Bosselut and Choi, 2019), or both
(Wang et al., 2020). KG-augmented models mainly
differ in how they encode KG knowledge, using
message passing (Schlichtkrull et al., 2018a; Feng
et al., 2020) or edge/path aggregation (Lin et al.,
2019; Bosselut and Choi, 2019; Ma et al., 2019;
Wang et al., 2020). The most relevant work to
ours is Wang et al. (2020). The main difference is
that they coarsely combine extracted and generated
knowledge via late fusion, while HGN encodes
both types of knowledge within a unified graph.
Besides, they use RN to pool over a set of paths
for graph encoding, while HGN reasons over the
graph via message passing and edge reweighting.



4046

Graph Structure Learning. Instead of assum-
ing a fixed graph structure, a number of graph mod-
els learn the graph structure with respect to the
downstream task. Some models learn to discretely
select edges for the graph (i.e., hard pruning). Kipf
et al. (2018) and Franceschi et al. (2019) sample
the graph structure from a predicted probabilis-
tic distribution with differentiable approximations.
Norcliffe-Brown et al. (2018) calculate the relat-
edness between any pair of nodes and only keep
the top-k strongest connections for each node to
construct the edge set. Sun et al. (2019) start with a
small graph and iteratively expand it with retrieving
operations. Others learn to reweight edges in a fully
connected graph (i.e., soft pruning). Jiang et al.
(2019) and Yu et al. (2019) propose heuristics for
regularizing edge weights. Hu et al. (2019) use the
question embedding to help predict edge weights.
Unlike other edge reweighting models, HGN op-
erates over a hybrid graph of both extracted and
generated edges, while updating edge weights with
respect to node, edge, and text features.

6 Conclusion

In this paper, we propose HGN, a KG-augmented
model for CSR. To address KG edge sparsity
and noisy edge extraction/generation, HGN learns
to jointly contextualize extracted and generated
knowledge by reasoning over both within a unified
graph structure. We justify HGN’s design by show-
ing that HGN improves performance on various
CSR benchmarks and user studies. In future work,
we plan to increase the graph’s relation expressive-
ness by incorporating open relations, plus make the
edge extraction/generation process more dependent
on the reasoning context.
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A Implementation Details of Edge
Embedding Generator (RelGen)

Here, we give a more detailed explanation of the
PLM-based edge embedding generator fgen, intro-
duced in the “Edge Embedding Generation” para-
graph of §3.2.

To implement fgen, we adopt GPT-2 (Radford
et al., 2019), which is pretrained on large corpora
and achieves great success on a wide range of
tasks involving sentence generation, as a gener-
ator to generalize the facts from the knowledge
graph. We first convert each fact (h, r, t) ∈ E into
a word sequence with a “prompt-generation” for-
mat:

[
h̃, $, t̃, $, h̃, r̃, t̃

]
, where h̃, r̃, t̃ are the word

sequence of h, r, t respectively, $ denotes the de-
limiter token used by GPT-2, and [·, ·] denotes word
sequence concatenation. We adopt this format be-
cause

[
h̃, r̃, t̃

]
is similar to a natural language fact.

Generating facts in a natural format helps induce
commonsense knowledge stored in GPT-2 (Bosse-
lut et al., 2019). We denote the synthetic sentence
as s(h,r,t) =

[
x
(h,r,t)
1 , . . . , x

(h,r,t)
n(h,r,t)

]
and finetune

GPT-2 on all synthetic sentences created from E
with the language modeling objective:

Lgen(E) =∑
(h,r,t)∈E

n(h,r,t)∑
i=1

logP
(
x
(h,r,t)
i | x(h,r,t)1 , . . . , x

(h,r,t)
i−1

)
.

After that, given any two concepts (vi, vj), we
build a prompt as [ṽi, $, ṽj , $] and let the model
to generate the following word sequence. We de-
note the whole sentence (both prompt and genera-
tion) as s(vi,vj), and the hidden states of each word
during generation as h1, . . . ,hT where T is the
sentence length. We average hidden states of all
words in the sentence to get the relational feature:
fgen(vi, vj) =

1
T

∑T
i=1 hi.

B Details of Datasets

Below are descriptions of the four datasets used for
the experiments presented in §4.

CommonsenseQA (Talmor et al., 2019) is a
multiple-choice QA dataset targeting common-
sense. It’s constructed based on the knowledge
in ConceptNet. Since the test set of the official
split (9741/1221/1140 for OFtrain/OFdev/OFtest)
is not publicly available, we compare our mod-
els with baseline models on the inhouse split

(8500/1221/1241 for IHtrain/IHdev/IHtest)4 used
by previous works (Lin et al., 2019; Feng et al.,
2020; Wang et al., 2020).

CODAH (Chen et al., 2019) contains 2801 sen-
tence completion questions testing commonsense
reasoning skills. We perform 5-fold cross valida-
tion using the official split.

OpenBookQA (Mihaylov et al., 2018) is a
multiple-choice QA dataset modeled after open-
book exams. Besides 5957 elementary-level sci-
ence questions (4957/500/500 for train/dev/test), it
also provides an open book with 1326 core science
facts. Solving the dataset requires combining facts
from open book with commonsense knowledge.

QASC (Khot et al., 2020) is a QA dataset with
questions about grade-school science. It has 9980
8-way multiple-choice questions (8134/926/920
train/dev/test), and comes with a corpus of 17M
sentences. Since the official test set does not have
labels, we create an in-house test split by moving
a randomly sampled set of 920 questions from the
training set to the test set. Solving questions in
QASC requires retrieving facts from the corpus
and composing them to produce an answer.

C Case Study

In addition to the experiments in §4, we present a
case study here, which compares a HGN-generated
graph with a KG-extracted graph used by GN. On
the development set of CommonsenseQA, there
are two dominating cases and we show the rep-
resentative instance of each one. Figure 5 (a)
shows the first case, where HGN prunes edges
from the extracted graph. Our HGN assigns the
highest weights to the most helpful facts (book,
AtLocation, house), (telephone book,
AtLocation, house). It also downweight un-
helpful fact (place, IsA, house) and invalid
fact (usually, RelatedTo, house). Figure 5
(b) shows the second case, where new generated
facts are incorporated into reasoning. All generated
facts that are kept by the model make sense in the
context and help identify the answer. Both cases
suggest that our model improve the quality of the
contextualized knowledge graph compared to the
current methods that only rely on extracted facts.

4https://github.com/INK-USC/MHGRN/
blob/master/data/csqa/inhouse_split_qids.
txt

https://github.com/INK-USC/MHGRN/blob/master/data/csqa/inhouse_split_qids.txt
https://github.com/INK-USC/MHGRN/blob/master/data/csqa/inhouse_split_qids.txt
https://github.com/INK-USC/MHGRN/blob/master/data/csqa/inhouse_split_qids.txt
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Graph of 
HGN

Graph of 
GN

(book, AtLocation, house), Edge weight: 0.48, Edge type: extracted

(telephone book, AtLocation, house), Edge weight: 0.48, Edge type: extracted

(place, IsA, house), Edge weight: 0.01, Edge type: extracted

(usually, RelatedTo, house), Edge weight: 0.01, Edge type: extracted

Question: What is a place that usually does not have an elevator and that sometimes has a telephone book?

Answer: house

Triples: 

(a) Case I: Unrelated extracted facts are filtered out.

Graph of
HGN

Graph of 
GN

(gossip, RelatedTo, water cooler), Edge weight: 0.09, Edge type: extracted

(office, RelatedTo, cooler), Edge weight: 0.09, Edge type: extracted

(office, RelatedTo, water), Edge weight: 0.09, Edge type: extracted

(office, RelatedTo, water cooler), Edge weight: 0.09, Edge type: extracted

(office worker, AtLocation, water cooler), Edge weight: 0.02, Edge type: generated

(worker, AtLocation, water cooler), Edge weight: 0.02, Edge type: generated

(gossiping, AtLocation, water cooler), Edge weight: 0.02, Edge type: generated

Question: Where would you find an office worker gossiping with their colleagues?

Answer: water cooler

Triples:

(b) Case II: Helpful generated facts are incorporated.

Figure 5: Representative cases from the development set of CommonsenseQA.


