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Abstract

Multi-task benchmarks such as GLUE and Su-
perGLUE have driven great progress of pre-
training and transfer learning in Natural Lan-
guage Processing (NLP). These benchmarks
mostly focus on a range of Natural Language
Understanding (NLU) tasks, without consider-
ing the Natural Language Generation (NLG)
models. In this paper, we present the General
Language Generation Evaluation (GLGE), a
new multi-task benchmark for evaluating the
generalization capabilities of NLG models
across eight language generation tasks. For
each task, we continue to design three sub-
tasks in terms of task difficulty (GLGE-Easy,
GLGE-Medium, and GLGE-Hard). This in-
troduces 24 subtasks to comprehensively com-
pare model performance. To encourage re-
search on pretraining and transfer learning on
NLG models, we make GLGE publicly avail-
able and build a leaderboard with strong base-
lines including MASS, BART, and Prophet-
Net1.

1 Introduction

Pretrained language models, such as BERT (De-
vlin et al., 2019) and other advanced pretrained
models (Raffel et al., 2020; Yang et al., 2019; Liu
et al., 2019; Alberti et al., 2019; Brown et al., 2020;
Clark et al., 2020) have made great progress in a
host of Natural Language Understanding (NLU)
tasks. Meanwhile, the development of general
evaluation benchmarks has also helped drive the
progress of these models. These benchmarks usu-
ally use an overall score to evaluate the perfor-
mance of models across a wide range of NLU tasks.
In addition to GLUE (Wang et al., 2019b) and Su-
perGLUE (Wang et al., 2019a) which are general

∗ Work is done during internship at Microsoft Research
Asia.

1The source code and dataset are publicly available at
https://github.com/microsoft/glge.

language understanding evaluation benchmarks for
English, several general language understanding
evaluation benchmarks for other languages are pro-
posed, such as CLUE (Xu et al., 2020) for Chi-
nese, FLUE (Le et al., 2020) for French, and In-
doNLU (Wilie et al., 2020) for Indonesian. Further-
more, the multilingual multi-task benchmarks such
as XTREME (Hu et al., 2020) and XGLUE (Liang
et al., 2020) are proposed for cross-lingual evalua-
tion.

In addition to NLU tasks, an increasing number
of pretrained language models designed for Natural
Language Generation (NLG) tasks have recently
been proposed, such as MASS (Song et al., 2019),
BERT-share (Rothe et al., 2020), BART (Lewis
et al., 2020), ProphetNet (Qi et al., 2020), and
ERINE-GEN (Xiao et al., 2020). However, the gen-
eralization capabilities of the language generation
of these models are usually evaluated with different
tasks, datasets, and metrics, which cannot provide a
coherent and comprehensive evaluation. Although
there are several general evaluation benchmarks
as we mentioned above, none of them are partic-
ularly designed for general language generation
evaluation.

To fill the gap of the NLG evaluation benchmark,
we introduce the General Language Generation
Evaluation (GLGE) benchmark, a new multi-task
benchmark for evaluating the generalization capa-
bilities of NLG in English language. It contains
eight English language generation tasks, covering
text summarization, question generation, genera-
tive question answering, and dialogue. We select
six pre-existing popular datasets and introduce two
new datasets selected from real-world scenarios.
Moreover, in order to provide more diversified dif-
ficulty challenges, we employ two simple but effec-
tive strategies to build three NLG evaluation bench-
marks (called GLGE-Easy, GLGE-Medium, and
GLGE-Hard) in terms of task difficulty.

https://github.com/microsoft/glge
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To better understand the challenges posed by
GLGE, we conduct experiments with existing
widely used non-pretrained models (e.g., vanilla
LSTM Seq2Seq (Bahdanau et al., 2015), vanilla
Transformer (Vaswani et al., 2017)), and pre-
trained models (e.g., MASS (Song et al., 2019),
BART (Lewis et al., 2020), and ProphetNet (Qi
et al., 2020)). We further analyze the n-gram diver-
sity of the output samples. The experimental results
show that there is a large performance gap between
the pretrained models and the non-pretrained mod-
els. However, on the GLGE-hard task, the perfor-
mance of the pretrained models still has great room
for improvement.

In summary, the contributions of this work are
five-fold: (1) a new multi-task NLG evaluation
benchmark consisting of eight distinct datasets
across four kinds of typical NLG tasks, (2) three
NLG evaluation benchmarks of different difficulty
levels, (3) standardized evaluation metrics and
scripts for model evaluation and comparison, (4)
open-sourced baselines and a public leaderboard2

for the benchmark, (5) a thorough comparative
study on existing widely used non-pretrained mod-
els and pretrained models with a detailed analysis
of the results.

2 GLGE Benchmark

2.1 Design Principles

For the GLGE benchmark, we design and select
the NLG tasks based on the following principles:

2.1.1 Task Diversity
The tasks in GLGE focus on evaluating the gener-
alization capabilities of a NLG model, varying the
task, the length of the input text, the length of the
output text, the type of generated text, and the size
of the dataset.

2.1.2 Task Difficulty
The tasks in GLGE should be challenging but
solvable, which can encourage researchers to de-
sign better NLG models. Furthermore, we aim
to provide benchmarks of different difficulty lev-
els like GLUE (Wang et al., 2019b) and Super-
GLUE (Wang et al., 2019a), which allows re-
searchers to comprehensively evaluate the models.
Researchers can also select the benchmark with
moderate difficulty according to the size of the

2https://microsoft.github.io/glge/.

model and the scale of the used pretraining corpus
for comparison.

2.1.3 Ease of Evaluation
The tasks in GLGE should be easily evaluated au-
tomatically. For some unconditional, open-ended,
and weak conditional language generation tasks
(e.g., answer-agnostic question generation, single-
turn chit-chat response generation, and story gen-
eration), reasonable generation results are diverse.
Due to the limited number of references in the au-
tomatic evaluation of text generation tasks, it is
more difficult for automatic evaluation of those
tasks. Therefore, instead of selecting unconditional
and weak conditional language generation tasks,
we tend to select language generation tasks with
stronger conditions (e.g., answer-aware question
generation), which makes the automatic evaluation
more convincing.

2.1.4 Task Popularity
Most tasks in GLGE should use widely-used NLG
datasets, which have been implicitly agreed upon
by the NLG community as challenging and mean-
ingful. Since GLGE is mainly designed for the
generalization capabilities evaluation of the En-
glish NLG pretrained model, the choice of task
also refers to several related works of NLG pre-
training model, such as MASS (Song et al., 2019),
BART (Lewis et al., 2020), ProphetNet (Qi et al.,
2020), and ERNIE-GEN (Xiao et al., 2020).

Based on the above principles, we invite 10 NLG
experts3 to discuss and vote on existing widely-
used NLG datasets. Note that since the GLGE is
designed for evaluating the generalization capabili-
ties of NLG in English language, we do not include
the cross-lingual NLG tasks, such as machine trans-
lation and cross-lingual text summarization (Liang
et al., 2020). Finally, we select 6 existing popu-
lar NLG datasets. Besides, we also introduce two
new datasets selected from real-world scenarios for
the GLGE benchmark, which makes GLGE have
more practical values. Unlike the existing datasets,
the test sets of these new two datasets are hidden,
which further ensures the fairness of the evaluation
results. The input sequence and output sequence
of the selected tasks are all well-defined. We pre-
process them and provide the input and output se-
quence pairs directly, which benefits researchers to
focus on model improvements.

3Each expert has experience in publishing multiple papers
at top conferences in the NLG field.

https://microsoft.github.io/glge/
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Corpus ∣Train∣ ∣Dev∣ ∣Test∣ ∣Src.∣ ∣Tgt.∣ Input Output Metric

Abstractive Text Summarization

CNN/DailyMail 287,113 13,368 11,490 822.3 57.9 article summary R-1/R-2/R-L
Gigaword 3,803,957 189,651 1,951 33.7 8.7 passage headline R-1/R-2/R-L
XSUM 204,017 11,327 11,333 358.5 21.1 article summary R-1/R-2/R-L
MSNews 136,082 7,496 7,562 310.7 9.7 article headline R-1/R-2/R-L

Answer-aware Question Generation

SQuAD 1.1 75,722 10,570 11,877 149.4 11.5 answer/passage question R-L/B-4/MTR
MSQG 198,058 11,008 11,022 45.9 5.9 highlight/passage question R-L/B-4/MTR

Conversational Question Answering

CoQA 108,647 3,935 4,048 354.4 2.6 history/passage answer F1-Score

Personalizing Dialogue

PersonaChat 122,499 14,602 14,056 120.8 11.8 persona/history response B-1/B-2/D-1/D-2

Table 1: GLGE task descriptions and statistics. ∣Train∣: the number of examples in train set. ∣Src.∣: the average
number of words in source inputs. R-L: ROUGE-L. B-4: BLUE-4. MTR: METEOR. D-2: Distinct-2.

2.2 Tasks and Datasets

GLGE contains eight English NLG tasks, covering
text summarization, question generation, genera-
tive question answering, and dialogue. Descrip-
tions and statistics of these tasks are shown in Ta-
ble 1, with concrete examples shown in Appendix.

2.2.1 Abstractive Text Summarization
As a typical NLG task, abstractive text summa-
rization aims to generate a short and fluent sum-
mary of a long text document. GLGE contains
four abstractive text summarization tasks. As dis-
cussed in Bhandari et al. (2020), we use ROUGE-1,
ROUGE-2, and ROUGE-L (Lin, 2004) as the met-
rics for these tasks.
CNN/DailyMail (Hermann et al., 2015) dataset
contains 220K articles from the Daily Mail news-
papers and 93K articles from the CNN. Each arti-
cle contains a bullet point summary. GLGE uses
the non-anonymized variant See et al. (2017). Af-
ter the pre-processing, there are 311,971 ⟨article,
summary⟩ pairs, where the source input is the ar-
ticle, and the target output is the summary which
consists of multiple sentences.
Gigaword (Rush et al., 2015) contains 4M ex-
amples extracted from the news articles of the
Gigaword corpus (Graff et al., 2003). After
the pre-processing, there are 3,995,559 ⟨passage,
summary⟩ data pairs, where the source input is the
first sentence of the article, and the target output is
the headline that usually contains a single sentence.
XSum (Narayan et al., 2018) consists of 227K on-
line articles from the British Broadcasting Corpora-
tion (BBC), which contains professionally writ-

ten single-sentence summaries. After the pre-
processing, there are 226,677 ⟨article, summary⟩
data pairs, where the source input is the news arti-
cle, and the target output is a single-sentence sum-
mary.
MSNews MicroSoft News headline generation
(MSNews) is a new News headline generation
dataset we collected for GLGE. We random se-
lect 151K online news articles from 2012-01-01
to 2020-09-01 from a real-world news search en-
gine. Each article contains a professionally written
single-sentence headline. After the pre-processing,
there are 151,140 ⟨article, headline⟩ data pairs,
where the source input is the news article, and the
target output is a news headline.

2.2.2 Answer-aware Question Generation

The question generation task is another typical
NLG task, which aims to generate a question based
on a given text passage or document. Compared
with answer-agnostic question generation tasks that
can generate lots of reasonable questions, answer-
aware question generation (Zhou et al., 2017) is
asked to generate a question asks towards the given
answer span based on a given text passage or doc-
ument. In order to facilitate automatic evaluation,
GLGE selects two answer-aware question genera-
tion tasks:
SQuAD 1.1 (Rajpurkar et al., 2016) dataset con-
tains over 100K crowd-worker created questions
with the corresponding answer spans in 536
Wikipedia articles. Since the original hidden test
set of the SQuAD 1.1 is hidden, we follow (Du
et al., 2017; Zhao et al., 2018) to re-split the dataset
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with the examples from the original training set and
development set. After the pre-processing, there
are 98,169 ⟨answer, passage, question⟩ data triples,
in which the source input is a Wikipedia passage
along with an answer span, and the target output is
a question. ROUGE-L, BLEU-4 (Papineni et al.,
2002), and METEOR (Banerjee and Lavie, 2005)
are used as the metrics.
MSQG MicroSoft Question Generation (MSQG)
is another dataset we collected, which is a new
challenge dataset, the questions in this dataset are
freely edited by daily users. For MSQG, we collect
220K passages from a real world search engine.
Each passage contains a highlight span and a re-
lated query, we regard the queries as questions in
this dataset. After the pre-processing, there are
220,088 ⟨highlight span, passage, question⟩ data
triples, where the source input is a news passage
along with highlight span, and the target output is a
user question. ROUGE-L, BLEU-4, and METEOR
are used as the metrics.

2.2.3 Conversational Question Answering
Conversational question answering is a classic and
popular generative question answering task. Com-
pared with the extractive question answering, such
as SQuAD (Rajpurkar et al., 2016), conversational
question answering requires the model to answer
the question based on a running conversation his-
tory and the given passage.
CoQA (Reddy et al., 2019) dataset contains 127K
questions with answers, obtained from 8K conver-
sations about text passages from seven diverse do-
mains. After the pre-processing, there are 116,630
⟨conversation history, passage, question, answer⟩
data 4-tuples, where the source input is a sequence
of conversation history along with a given question
and a given passage, and the target output is a free-
form answer text. F1-Score (Rajpurkar et al., 2016)
is used as the metric.

2.2.4 Personalized Dialogue
Conversational AI is an important topic in NLG.
Compared with text summarization, the responses
of single-turn conversations are diverse and might
lack of specification, and thus it is hard to use the
single ground-truth for automatic evaluation. We
select the personalizing dialogue task, which is a
challenging multi-turn conversation task. In addi-
tion to the conversation history, this task gives the
profile information as an additional condition to
facilitate specific response generation.

PersonaChat (Zhang et al., 2018) dataset consists
of about 160K utterances, which requires the model
to generate responses according to given multi-
turn conversations and persona profile. After pre-
processing, there are 151,157 ⟨persona profile de-
scription text, conversation history, response⟩ data
triples, where the source input is a sequence of
conversation history along with several sentences
of persona profile description information, and the
target output is a response. BLEU-1, BLEU-2,
Distinct-1, and Distinct-2 (Li et al., 2016) are used
as the evaluation metrics.

2.3 Overall Score
Similar to GLUE (Wang et al., 2019b) and Super-
GLUE (Wang et al., 2019a), we seek to give an
overall system performance over all GLGE tasks
by aggregating the scores of all tasks. We follow
GLUE to adopt a simple approach that weighs each
task equally. For the tasks with multiple metrics,
we firstly average those metrics to get a task score.
Besides, because the values of the original Distinct-
1 (D-1) and Distinct-2 (D-2) (Li et al., 2016) scores
which are used as the metrics for dialogue task are
usually quite small (less than 0.01), we re-scale
them by 100.0 so that these score values are in the
same order of magnitude as other scores.

2.4 Challenges of Three Difficulty Levels
As discussed in § 2.1.2, GLGE provides three lev-
els of difficulty for each task, called GLGE-Easy,
GLGE-Medium, and GLGE-Hard. The original
8 task datasets as described in § 2.2 constitute the
GLGE-Easy. Based on GLGE-Easy, we employ
two strategies to further increase the task difficulty.
Low-resource. We increase the difficulty of
GLGE by simulating low-resource scenarios. For
each task, we keep the test and development sets of
GLGE-Easy and randomly reduce the scale of the
training data to 50% of the original train set. The
dataset of 8 tasks under this setting is regarded as
GLGE-Medium.
Low-frequency. In order to further evaluate the
generalization capability of the NLG model, we
increase the difficulty of GLGE by reducing the
word overlap rate between the output of the training
set and the output of the test set. The motivation is
that a good NLG model should be able to generate a
fluent target output based on the input information,
even if the target output may contain some low-
frequency words. For the test set and development
sets of GLGE-Hard, we still use those in GLGE-
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Easy. For the training set of GLGE-Hard, we first
count the frequency of each token in the target
sentence of the test set. Then we remove the stop
words of the target sentence of each training sample
in GLGE-Easy, ranking them by calculating their
word frequency score of the test set. This can be
formulated as

Score(y) =
∑wy∈y

TF(wy)
∣y∣ , (1)

where y is a target sentence without stop words,
wy is a token in y, TF(wy) denotes the word fre-
quency of the token wy in the target sentences of
the whole test set, and ∣y∣ denotes the token length
of y. Instead of reducing the training data scale
randomly as in GLGE-Medium, we select the top
25% training data with minimum word frequency
score of the test set from the original training set
as the training set of each dataset. The dataset of 8
tasks under this setting is regarded as GLGE-Hard.

3 Experiments

3.1 Baselines

For the baselines, we first evaluate two widely-
used non-pretrained models: vanilla LSTM based
Seq2Seq (Bahdanau et al., 2015) and vanilla Trans-
former (Vaswani et al., 2017). Besides, we eval-
uate several widely used pretrained NLG models,
including MASS (Song et al., 2019), BART (Lewis
et al., 2020), and ProphetNet (Qi et al., 2020). To
further evaluate the performance of the pretrained
NLG models of different model sizes and the dif-
ferent scales of the pretraining corpus, we com-
pare the MASSbase, ProphetNetbase, MASSmiddle,
BARTlarge, and ProphetNetlarge on GLGE.

3.2 Implementation Details

Vanilla LSTM (Bahdanau et al., 2015). The hyper-
parameters and implementation of LSTM-Seq2Seq
are based on the LSTM register model of Fairseq4,
where the word embedding dimension, the hid-
den size, the number of the encoder layer, and the
number of the decoder layer are 512, 512, 1, and
1, respectively. For each task in GLGE, we use
Adam (Kingma and Ba, 2015) with an initial learn-
ing rate of between 0.0001 and 0.0003, and train
the LSTM-Seq2Seq for a maximum of 100 epochs.

4https://github.com/pytorch/fairseq/
blob/master/fairseq/models/lstm.py.

Vanilla Transformer (Vaswani et al., 2017).
The hyper-parameters and implementation
of Transformer are based on the trans-
former vaswani wmt en de big register model of
Fairseq5, which contains a 6-layer encoder and a
6-layer decoder with 1024 embedding/hidden size
and 4096 feed-forward filter size. For each task
in GLGE, we use Adam with the initial learning
rate of between 0.0003 and 0.001, and train the
Transformer for a maximum of 20 epochs.
MASSbase (Song et al., 2019). The hyper-
parameters and implementation of MASS are based
on their source code6. MASSbase contains a 6-layer
encoder and a 6-layer decoder with 768 embed-
ding/hidden size and 3072 feed-forward filter size.
The MASSbase is pretrained on BookCorpus (Zhu
et al., 2015) and English Wikipedia (16GB in total).
For each task in GLGE, we fine-tune MASSbase
with the same hyper-parameters used in their source
code7 for a maximum of 25 epochs.
MASSmiddle (Song et al., 2019) which contains a
6-layer encoder and a 6-layer decoder with 1024
embedding/hidden size and 4096 feed-forward fil-
ter size. The MASSmiddle is also pretrained on
BookCorpus and English Wikipedia (16GB in to-
tal). For each task in GLGE, we use the same
hyper-parameters as used in MASSbase.
ProphetNetbase (Qi et al., 2020). The hyper-
parameters and implementation of ProphetNet are
based on their source code8. ProphetNetbase con-
tains a 6-layer encoder and a 6-layer decoder with
768 embedding/hidden size and 3072 feed-forward
filter size. Similar to MASS, the ProphetNetbase is
pretrained on BookCorpus and English Wikipedia
(16GB in total) with 125K steps. For each task in
GLGE, we fine-tune ProphetNetbase with the same
hyper-parameters used in their source code for a
maximum of 10 epochs.
ProphetNetlarge (Qi et al., 2020). It contains a
12-layer encoder and 12-layer decoder with 1024
embedding/hidden size and 4096 feed-forward fil-
ter size. The ProphetNetlarge is pretrained on the
160GB English language corpora of news, books,
stories, and web text for 14 epochs. For each task in

5https://github.com/pytorch/fairseq/
blob/master/fairseq/models/transformer.
py.

6https://github.com/microsoft/MASS
7https://github.com/microsoft/MASS/

tree/master/MASS-summarization
8https://github.com/microsoft/

ProphetNet

https://github.com/pytorch/fairseq/blob/master/fairseq/models/lstm.py
https://github.com/pytorch/fairseq/blob/master/fairseq/models/lstm.py
https://github.com/pytorch/fairseq/blob/master/fairseq/models/transformer.py
https://github.com/pytorch/fairseq/blob/master/fairseq/models/transformer.py
https://github.com/pytorch/fairseq/blob/master/fairseq/models/transformer.py
https://github.com/microsoft/MASS
https://github.com/microsoft/MASS/tree/master/MASS-summarization
https://github.com/microsoft/MASS/tree/master/MASS-summarization
https://github.com/microsoft/ProphetNet
https://github.com/microsoft/ProphetNet
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Models Avg. Text Summarization Question Generation QA Dialogue
CNN/DM Gigaword XSUM MSNews SQuAD 1.1 MSQG CoQA PesonaChat

Metrics R-1/R-2/R-L R-L/B-4/MTR F1 B-1/B-2/D-1/D-2

GLGE-Easy

LSTM 20.0 37.3/15.7/34.4 34.2/16.0/31.8 25.1/6.9/19.9 30.0/14.6/27.7 27.2/3.8/8.9 25.3/3.5/14.1 15.1 42.2/35.9/0.2/0.7
Transformer 21.9 39.5/16.7/36.7 37.1/18.4/34.5 30.5/10.4/24.2 33.0/15.4/30.0 30.7/4.8/10.9 29.3/5.1/16.6 15.7 38.3/33.6/0.2/0.7
MASSbase 33.6 42.1/19.5/39.0 38.7/19.7/35.9 39.7/17.2/31.9 39.4/21.0/36.1 49.4/20.1/24.4 38.9/10.2/23.3 65.4 41.0/35.7/1.4/6.9
ProphetNetbase 33.8 42.5/19.7/39.5 38.9/19.9/36.0 39.8/17.1/32.0 40.6/21.6/37.0 48.0/19.5/23.9 37.1/9.3/22.7 65.3 46.0/38.4/1.3/7.3
MASSmiddle 34.3 42.9/19.8/39.8 38.9/20.2/36.2 39.1/16.5/31.4 40.4/21.5/36.8 49.9/21.3/25.2 38.9/9.5/23.5 67.6 46.0/38.2/1.2/6.2
BARTlarge 35.8 44.1/21.2/40.9 38.1/18.4/34.9 45.1/22.2/37.2 43.8/24.0/39.2 50.3/22.0/26.4 38.8/9.2/24.3 68.6 49.9/40.0/1.3/8.0
ProphetNetlarge 36.5 44.2/21.1/41.3 39.5/20.4/36.6 44.4/21.3/36.4 44.1/24.4/40.2 51.5/22.5/26.0 38.3/9.6/23.3 73.0 46.7/39.0/1.3/7.5

GLGE-Medium

LSTM 18.1 35.3/14.1/32.8 33.3/15.2/31.1 21.5/4.6/17.1 27.0/12.1/24.9 26.6/3.5/8.2 18.6/1.7/9.5 12.9 41.3/35.3/0.1/0.5
Transformer 19.5 35.0/11.0/32.4 36.7/18.1/34.1 27.5/8.3/21.8 26.8/9.7/24.3 28.3/4.1/9.8 27.0/4.2/15.0 14.2 37.7/29.6/0.2/0.7
MASSbase 33.0 41.2/18.8/38.2 37.9/19.1/35.2 37.4/14.9/29.8 38.9/20.5/35.6 48.9/20.0/24.3 38.2/9.5/22.8 65.0 42.8/36.7/1.3/6.2
ProphetNetbase 32.6 41.6/19.2/38.7 38.6/19.6/35.7 37.8/15.3/30.4 39.0/20.4/35.7 46.4/17.9/22.5 37.0/8.7/22.3 62.5 45.4/37.7/1.4/7.3
MASSmiddle 33.6 41.5/19.0/38.5 38.3/19.1/35.4 38.4/15.8/30.7 39.6/20.9/36.0 49.3/20.4/24.4 38.3/9.9/22.7 67.2 44.0/37.3/1.3/6.1
BARTlarge 35.3 42.8/20.1/39.1 38.0/18.3/34.7 43.1/19.5/34.1 43.4/23.6/38.9 49.7/21.6/25.9 38.4/9.5/24.0 69.4 50.4/39.1/1.2/7.4
ProphetNetlarge 35.5 43.1/20.3/40.1 39.1/19.8/36.1 41.8/18.7/33.8 43.3/23.5/39.4 50.4/21.9/25.8 39.3/10.0/23.7 72.3 42.0/36.4/1.4/7.8

GLGE-Hard

LSTM 12.6 26.2/6.8/24.2 26.3/9.2/24.6 17.8/2.4/14.3 8.2/0.9/7.6 27.3/1.0/6.7 12.5/0.4/5.0 10.3 36.8/28.7/0.1/0.4
Transformer 14.4 28.3/6.2/25.8 28.6/10.8/26.5 23.0/5.3/18.3 18.0/3.5/16.2 25.9/1.1/7.0 17.0/1.3/8.2 9.9 30.0/29.7/0.1/0.2
MASSbase 28.2 40.4/18.0/37.3 32.2/13.6/29.5 33.7/11.6/26.7 35.4/17.0/32.4 42.8/13.4/19.0 34.1/7.5/18.6 50.2 40.1/34.9/1.6/7.8
ProphetNetbase 28.0 40.9/18.4/37.7 32.0/13.5/29.5 34.2/11.6/26.8 35.2/17.0/32.1 41.6/13.4/18.9 32.3/7.2/18.0 48.5 41.6/35.5/1.6/8.3
MASSmiddle 29.1 41.1/18.5/38.0 32.2/13.5/29.9 34.9/12.5/27.6 36.6/18.0/33.4 45.1/16.0/21.3 34.3/8.0/19.0 51.2 41.4/35.4/1.5/7.6
BARTlarge 31.0 41.7/19.1/37.9 33.0/13.6/30.0 39.7/16.1/30.9 40.8/20.8/36.4 45.9/18.1/23.7 35.1/8.5/20.7 53.5 48.3/37.3/1.3/7.2
ProphetNetlarge 30.5 41.2/18.7/38.0 32.4/13.7/29.9 39.4/16.1/31.6 40.3/20.5/36.4 46.4/17.0/22.1 34.0/8.2/19.0 54.1 40.5/35.2/1.8/9.2

Table 2: Overall results of baselines on all GLGE tasks. We use the color to highlight the overall score. R-1:
ROUGE-1. R-2: ROUGE-2. R-L: ROUGE-L. B-4: BLUE-4. MTR: METEOR. D-1: Distinct-1. D-2: Distinct-2.
Note that as discussed in § 2.3, the values of Distinct-1 and Distinct-2 are multiplied by 100.

GLGE, we fine-tune ProphetNetlarge with the same
hyper-parameters used in their source code for a
maximum of 10 epochs.
BARTlarge (Lewis et al., 2020). The hyper-
parameters and implementation of BARTlarge are
based on the source code9. BARTlarge contains a
12-layer encoder and 12-layer decoder with 1024
embedding/hidden size and 4096 feed-forward fil-
ter size. The pretraining of BARTlarge uses the same
pretraining data as Liu et al. (2019), consisting of
160GB of news, books, stories, and web text. For
each task in GLGE, we fine-tune BARTlarge with
the same hyper-parameters used in their source
code10 for a maximum of 20000 iterations.

Except BART, all the baselines adopt BERT-
uncased tokenizer. We fine-tune all baselines on
each individual task with 4× 16GB NVIDIA V100
GPUs. We evaluate the best model checkpoint
based on the loss on the development set. During
inference, we use beam search (Och and Ney, 2004)
with beam size 4 or 5 and remove the duplicated
trigrams in beam search (Fan et al., 2018) to obtain

9https://github.com/pytorch/fairseq/
tree/master/examples/bart

10https://github.com/pytorch/fairseq/
blob/master/examples/bart/README.
summarization.md

the generated results.

3.3 Results and Analysis

Overall results. The main results are presented in
Table 2. From the overall scores (highlighted in
color), we can observe the fairly consistent gains
moving from LSTM to Transformer, and then to
pretrained base models and pretrained large models,
such as ProphetNetbase and ProphetNetlarge. The
performance gap between the pretrained model and
non-pretrained model is obvious. The difference
in terms of overall score is about absolute 15% on
the three levels GLGE benchmarks (GLGE-Easy,
GLGE-Medium, and GLGE-Hard). As expected,
the pretrained large models (ProphetNetlarge and
BARTlarge) achieve the best overall scores.

From the results of each model on the three
levels GLGE benchmarks, we can see that each
model has a significant drop in performance from
GLGE-Easy to GLGE-Medium and GLGE-Hard
benchmarks. For both the non-pretrained model
and pretrained models, there is a nearly 2% drop in
terms of overall score from GLGE-Easy to GLGE-
Medium, and about 4%-8% drop from GLGE-Easy
to GLGE-Hard. These results illustrate the diver-
sified difficulty of GLGE. We recommend that re-
searchers choose a GLGE benchmark with moder-

https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
https://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
https://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
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Models Avg. Text Summarization Question Generation QA Dialogue
CNN/DM Gigaword XSUM MSNews SQuAD 1.1 MSQG CoQA PesonaChat

Metrics R-1/R-2/R-L R-L/B-4/MTR F1 B-1/B-2/D-1/D-2

GLGE-Medium + Low-frequency Strategy

LSTM 16.4 35.4/13.9/32.7 31.3/13.2/29.3 20.8/4.0/16.5 25.3/10.4/23.3 24.8/1.2/6.8 15.3/1.1/7.1 10.5 34.8/31.6/0.2/0.6
Transformer 18.1 36.8/13.7/34.0 33.2/14.6/30.9 25.9/7.3/20.7 25.2/7.6/22.7 26.4/1.9/7.8 22.8/2.7/11.9 10.8 39.6/34.3/0.1/0.2
MASSbase 29.9 41.3/18.8/38.3 34.4/15.3/31.7 36.1/13.6/28.5 36.4/17.9/33.1 45.3/16.0/21.4 34.6/8.5/19.9 54.6 40.3/34.6/1.5/7.5
ProphetNetbase 29.9 41.7/19.1/38.7 35.1/16.1/32.4 36.5/14.0/28.9 37.4/18.6/34.0 43.7/15.1/20.5 33.8/7.6/20.0 53.1 42.3/35.9/1.4/7.6
MASSmiddle 30.8 41.5/18.9/38.4 35.1/16.0/32.5 37.0/14.4/29.4 37.9/19.1/34.6 46.3/17.0/22.1 35.5/8.9/20.5 56.6 41.0/35.5/1.6/8.0
BARTlarge 32.0 42.2/19.6/38.4 35.7/16.1/32.6 41.5/17.9/32.3 41.5/21.4/37.0 46.5/18.1/24.5 35.9/8.4/21.7 54.6 49.1/38.1/1.3/8.4
ProphetNetlarge 32.3 42.7/20.0/39.5 35.3/16.2/32.6 40.6/17.4/32.6 40.9/21.4/37.1 47.8/19.2/23.9 36.4/9.4/20.9 57.6 44.4/36.9/1.4/8.3

Table 3: Overall results of baselines across the tasks of GLGE-Medium + Low-frequency strategy. We use the
color to highlight the overall score. R-1: ROUGE-1. R-2: ROUGE-2. R-L: ROUGE-L. B-4: BLUE-4. MTR:

METEOR. D-1: Distinct-1. D-2: Distinct-2.

ate difficulty based on the model size of the pre-
trained model and the scale size of the pretrained
corpus. At the same time, researchers can also
perform more comprehensive evaluation of model
performance on GLGE benchmarks at all difficulty
levels.

Low-frequency strategy analysis. To further ver-
ify the effectiveness of the low-frequency strategy
as described in § 2.4. We build the GLGE-Medium
+ low-frequency benchmark and evaluate the mod-
els on it. Both GLGE-Medium and GLGE-Medium
+ low-frequency retain 50% of the training samples
in the GLGE-Easy training set. The only differ-
ence between them is that GLGE-Medium uses
random sampling to retain 50% training samples,
while GLGE-Medium + low-frequency uses the
low-frequency strategy as used in GLGE-Hard to
select 50% training samples. We use the same base-
lines with the same settings in § 3.2 to compare the
model performance on GLGE-Medium and GLGE-
Medium + low-frequency. The results are shown
in Table 3. We can see that after the introduction
of the low-frequency strategy, the performance of
the models has dropped significantly. These results
demonstrate that the low-frequency strategy can ef-
fectively improve the difficulty of the benchmark.

Output diversity analysis. We further compare
the output diversity of each model on all the tasks of
GLGE-Easy. We report the mean of the Distinct bi-
gram (Distinct-2) (Li et al., 2016) ratios of the gen-
erated samples to the golden references. Note that
if the bigram diversity of the generated samples is
close to that of the real samples, the distinct bigram
ratio is close to 1. The results are shown in Fig-
ure 1. In general, output bigram diversity of the pre-
trained model is higher than non-pretrained models.
For the tasks of CNN/DailyMail (CNN/DM), Gi-
gaword, and MSNews, the bigram diversity of the

generated samples are close to that of the real sam-
ples. However, for the tasks of XSUM, SQuAD 1.1,
MSQG, CoQA, and PersonaChat, the bigram di-
versity of the non-pretrained model is significantly
lower than that of the pretrained model. For these
tasks, the non-pretrained model tends to generate
universal responses (Li et al., 2016) or outputs.
Moreover, there is still a huge gap between the
bigram diversity of pretrained models and real sam-
ples (golden) on the task of XSUM, MSQG, and
PersonaChat. Obviously, there exists great room
for future improvement of the pretrained models in
terms of output diversity.

4 Related Works

Benchmarks Recently, the development of gen-
eral natural language understanding (NLU) eval-
uation benchmarks has helped drive the progress
of pretraining and transfer learning in NLP. Con-
neau and Kiela (2018) propose a toolkit, SentE-
val, for evaluating the quality of universal sen-
tence representations. DecaNLP (McCann et al.,
2018) casts ten diversified NLP tasks as a general
question-answering format for evaluation. Wang
et al. (2019b) propose a widely-used multi-task
benchmark, GLUE, for NLU in the English lan-
guage. There are nine NLU tasks in GLUE, in-
cluding two single-sentence tasks, three similarity
and paraphrase tasks, and four natural language
inference tasks. After that, SuperGLUE (Wang
et al., 2019a) is proposed as a harder counterpart of
GLUE. Besides sentence- and sentence-pair classi-
fication tasks used in GLUE, SuperGLUE extends
the task formats by introducing coreference resolu-
tion and question answering tasks. More recently,
A new NLU benchmark called DialoGLUE (Mehri
et al., 2020) for task-oriented dialogue is proposed.
It consists of seven task-oriented dialogue datasets
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Figure 1: Distinct bigram ratios of the generated samples to the golden references on GLGE-Easy.

covering four kinds of NLU tasks: intent predic-
tion, slot tagging, semantic parsing, and dialogue
state tracking.

In addition to the English NLU evaluation bench-
mark, there has been an increasing amount of
new benchmarks in other languages. For exam-
ple, CLUE (Xu et al., 2020) is a Chinese NLU
benchmark that consists of eight diverse Chinese
NLU tasks, including single-sentence, sentence-
pair, and machine reading comprehension tasks.
FLUE (Le et al., 2020) is proposed for the French
language, which is a French NLU benchmark that
includes several NLU tasks, such as text classifi-
cation, paraphrasing, language inference, parsing,
POS tagging, and word sense disambiguation. In-
doNLU (Wilie et al., 2020) is a new benchmark
for evaluating Indonesian language understanding,
which introduces twelve tasks, ranging from single
sentence classification to pair-sentences sequence
labeling. Furthermore, the multilingual multi-task
benchmarks are proposed for cross-lingual evalu-
ating. Hu et al. (2020) introduce XTREME bench-
mark which is a multi-task benchmark for evalu-
ating the cross-lingual generalization capabilities
of multilingual representations across forty lan-
guages and nine tasks. Almost at the same time,
XGLUE (Liang et al., 2020) is proposed which is a
new multilingual multi-task benchmark for cross-
lingual pretraining, understanding, and generation.
There are eleven cross-lingual tasks including nine
NLU tasks and two NLG tasks in XGLUE, each
task provides labeled data in multiple languages.

The above benchmarks mostly focus on NLU
which provides a range of language understanding

tasks. However, to our best knowledge, there is
no benchmark designed specifically for general
NLG evaluation. To fill this gap, we introduce
GLGE, a new multi-task benchmark for evaluating
the generalization capabilities of NLG across eight
language generation tasks.

Pretrained NLG Models In recent years, pre-
trained language models (Devlin et al., 2019; Raf-
fel et al., 2020; Yang et al., 2019; Liu et al., 2019;
Alberti et al., 2019; Brown et al., 2020; Clark
et al., 2020) have achieved state-of-the-art results
in several NLU benchmarks. Besides, more and
more pretraining based models which are designed
for NLG tasks are proposed. Rothe et al. (2020)
adopt the Transformer-based sequence-to-sequence
(seq2seq) model and leverage the checkpoints of
the pretrained NLU models for sequence gener-
ation tasks. MASS (Song et al., 2019) pretrains
the seq2seq model by dropping a continuous token
span to corrupt the text and learns to reconstruct
it. Raffel et al. (2020) investigate several model
structures and pretraining tasks, and further pro-
pose a unified text-to-text transformer called T5.
Similarly, BART (Lewis et al., 2020) adopts the
encoder-decoder structure and is pretrained with
randomly sentence order reconstruction and text
in-filling tasks.

More recently, Qi et al. (2020) propose, Prophet-
Net, which introduces the future n-gram predic-
tion mechanism for language generation. ENRINE-
GEN (Xiao et al., 2020) introduces the infilling
generation mechanism, noise-aware generation,
and span-by-span generation task for NLG model
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pretraining. In addition to general NLG tasks,
some task-specific pretrained NLG models are
proposed. For dialogue and conversation, a di-
alogue generative pretrained transformer called
DialoGPT (Zhang et al., 2020c) is proposed for
conversational response generation, which is pre-
trained on a large-scale conversation-like exchange
corpus. Furthermore, PLATO (Bao et al., 2020) is
a dialogue generation pretraining framework for
chit-chat, knowledge grounded dialogues, and con-
versational question answering. PLATO introduces
discrete latent variables to tackle the one-to-many
mapping problem in response generation. For text
summarization, Zhang et al. (2020a) propose PE-
GASUS, which design the pretraining objectives
called gap sentence generation tailored for abstrac-
tive text summarization.

5 Conclusion

To facilitate the development, evaluation, and com-
parison of new NLG models, we introduce GLGE,
a multi-task evaluation benchmark for NLG with
three difficulty levels. To the best of our knowl-
edge, GLGE is the first comprehensive NLG evalu-
ation benchmark. We evaluate several baselines on
GLGE and analyze their results. The GLGE bench-
mark is hosted publicly and we invite the research
community to submit to the leaderboard.

In future work, we will try to introduce
other automatic evaluation metrics, such
as BERTscore (Zhang et al., 2020b) and
BLEURT (Sellam et al., 2020). Besides, we will
compare the correlation between these metrics and
human judgment.
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l Article: The only thing crazier than a guy in snowbound Massachusetts boxing up the powdery white stuff and offering
it for sale online? People are actually buying it. For $ 89, self-styled entrepreneur Kyle Waring will ship you 6 pounds
of Boston-area snow in an insulated Styrofoam box – enough for 10 to 15 snowballs, he says. [...], a coastal suburb
north of Boston. He joked about shipping the stuff to friends and family in warmer states, and an idea was born [...]
Target: A man in suburban Boston is selling snow online to customers in warmer states. For $ 89, he will ship 6 pounds
of snow in an insulated Styrofoam box.

G
ig

aw
or

d Passage: U.S. business leaders lashed out Wednesday at legislation that would penalize companies for employing
illegal immigrants.

Target: U.S. business attacks tough immigration law.

X
SU

M Article: Burberry reported pre-tax profits of £166m for the year to March. [...], Sales rose 7% to £1.28bn, with the
company recording double-digit sales growth in Europe and Asia Pacific. Adjusted profit rose 23% to £215m, taking
into account one-off items and a favourable exchange rate. Stores in London in particular benefited from favourable
currency movements and increased tourism. [...], Burberry shares were up 7.6% at 659 pence in afternoon trading.
Target: Luxury fashion designer Burberry has returned to profit after opening new stores and spending more on online
marketing.

M
SN

ew
s Article: Los Angeles : Actor Chadwick Boseman, who played Black icons Jackie Robinson and James Brown before

finding fame as the regal Black Panther in the Marvel cinematic universe, died Friday of cancer, his representative said.
He was 43. Boseman died at his home in the Los Angeles area with his wife and family by his side, his publicist Nicki
Fioravante told The Associated Press. [...]
Target: Black Panther actor Chadwick Boseman dies of cancer at 43.

SQ
uA

D
1.

1 Passage: Super Bowl 50 was an American football game to determine the champion of the National Football League
(NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the National
Football Conference (NFC) champion Carolina Panthers 24–10 to earn their third Super Bowl title. The game was
played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa Clara, California. As this was
the 50th Super Bowl, [...].
Answer: Santa Clara, California
Target: Where did Super Bowl 50 take place?

M
SQ

G Passage: On March 28, 1830, Congress passed the Indian Removal Act, beginning the forced relocation of thousands
of Native Americans in what became known as the Trail of Tears. Not all members of Congress supported the Indian
Removal Act.
Highlight Span: Indian Removal Act
Target: What act was passed to relocate the native Americans?

C
oQ

A Passage: John was in the third grade, and nine years old. Every day he had to walk home from school. There were
some kids in his class who were mean to him, and during the winter they would throw snowballs at him. [...], John
thought it was a good deal, and ended up being much better at math.
Conversation History: Q1: Who is in third grade? A1: John. Q2: How old is he? A2: Nine.
Question: What did kids do to him?
Target: Throw snowballs at him.

Pe
rs

on
aC

ha
t Persona Profile description text: My wife left me and took my children. I don’t believe in god. I’m overweight and

unhappy. I work at a nursing home. I spend most of my time on Facebook when I’m not working.
Conversation History: Q1: I got a big house with 7 rooms. R1: Nice, majority of my time I am on Facebook one time.
Q2: I saw a man fly to the moon.
Target: Like on TV? I’m obese and unhappy.

Table 4: Development-set examples from the tasks in GLGE. Bold text denotes part of the example format for
each task. Text in italics is part of the source input text. Underlined text is the target output text. [...] denotes the
omitted texts.


