. . Macro Top-k
Architecture | Classifier Proc T Rocall 3 10
GNB 55 44 129 ] 200
GLTR RF 78 | 66| 126 | 190
MLP 36| 63| 156 | 237
GNB 82 | 58 [ 141 [ 214
Wiiteprints | RF 102 | 84| 149 | 218
MLP 169 | 147 | 30.8 | 42.1
GNB 102 [ 93219 [ 312
RF 205 | 169 | 27.1 | 362
GloVE MLP 207 | 272 | 444 | 541
CNN 31| 267 | 442 | 535
GNB 2%8 [ 124 [ 278 [ 377
RF 105 | 78| 158 | 27.1
GPT2 MLP 449 | 290 | 47.5 | 569
CNN 309 | 287 | 49.1 | 59.1
GNB 392 | 158 [ 308 | 41.0
RF 111 84 | 166 | 258
RoBERTa MLP 440 | 348 | 548 | 625
CNN 335 | 320 | 53.1 | 63.0
GNB 301 37.0 | 569 | 66.0
RF 276 | 228 | 348 | 452
FT-GPT2 MLP 402 | 364 | 557 | 640
CNN 446 | 421 | 609 | 689
GNB 477 | 415 [ 579 | 649
RF 420 | 368|469 | 532
FT-RoBERTa | MLP 428 | 415|582 | 653
CNN 460 | 436 | 62.0 | 69.7

Table 2: Performance of multi-class classifiers based
on macro Precision (Prec), Recall and top-k accuracy
(k =5; 10) for the largest setting of 108 classes.

The output is then fed to two dense layers, the lat-
ter of which is a softmax layer.

In addition, we also experiment with other
shallow classifiers (SVM, Decision Tree) and
two more types of feature generators (fine-tuned
GLTR, trainable word embeddings). We report
additional results, observations and the hyper-
parameters for all the models in the appendix.

5 Evaluation

We conduct experiments to evaluate these methods
using the real-world Reddit dataset as described
in Section 3. Our training, validation, and test
sets consist of 800, 100 and 200 synthetic com-
ments respectively from each of the 108 subreddit
classes. In total, our training, validation and test
sets comprise 86k, 11k and 22k comments respec-
tively. For evaluation, we use macro precision and
recall. We also measure top-K accuracy based on
the confidence score to assess the accuracy of the
classifiers in k (k = 5;10) guesses for 108 classes.

5.1 Results

Table 2 lists the results of different feature rep-
resentations and classifiers. Overall, classifiers
based on fine-tuned LM embeddings perform
the best, with RoBERTa slightly outperforming
GPT2. Fine-tuned embeddings are successfully
able to capture the domain of the organic text
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40 ol 05 S8
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(a) Fine-tuned RoBERTa (b) Pre-trained RoBERTa

(c) Fine-tuned GPT2 (d) Pre-trained GPT2

Figure 4: Visualisation of fine-tuned (a,c) and pre-trained
embeddings (b,d) of specific classes. Closely condensed clus-
ters specific to the domain of the organic text form in the fine-
tuned embeddings.

the LM is fine-tuned on. To provide further in-
sights into our best performing feature represen-
tations, we visualize the feature embeddings of
pre-trained and fine-tuned RoBERTa and GPT2.
Figure 4 plots the 2D projection of synthetic text
(using t-SNE) generated by different LMs that are
fine-tuned on various subreddits. Fine-tuned em-
beddings form more cohesive and separated clus-
ters than pre-trained embeddings. Thus, we con-
clude that fine-tuning these embeddings is benefi-
cial in attributing synthetic text generated by dif-
ferent fine-tuned LMs. Note that certain clusters
are more cohesive and better separated than others.
For example, the most distinct cluster is observed
for r/wallstreetbets in Figures 4a and 4c for fine-
tuned embeddings. However, it is not quite dis-
tinct in Figures 4b and 4d for pre-trained embed-
dings. We also note that some clusters with high
topical similarity (e.g., r/science and r/askscience)
are closer to each other. On the other hand, some
clusters with likely lower topical similarity (e.g.,
r/socialism and r/conservative) are far apart.
Despite combining word probabilities from
both BERT and GPT2, GLTR is ineffective. We
find that synthetic texts generated from differ-
ent fine-tuned models have similar word proba-
bilities because perhaps they are more impacted
by the pre-training process rather than the subse-
quent fine-tuning. This shows that the classifier
that performs well for distinguishing between or-
ganic and synthetic text (P1) does not work well
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Figure 5: (a) Micro and (b) Macro precision-recall trade-off
by varying the gap statistic threshold. The comparison with
all baselines is included in the appendix.

for distinguishing between synthetic text by dif-
ferent fine-tuned LMs (P3). Writeprints feature set
provides some improvement but is still ineffective.
Our finding corroborates Manjavacas et al. (2017),
who reported that linguistic and stylistic features
as used in Writeprints are not effective in distin-
guishing between synthetic text. GloVE again of-
fers some improvement over Writeprints but its
performance remains significantly worse than that
of our best performing method.

Overall, fine-tuned RoOBERTa embeddings with
CNN performs the best with 46.0% precision and
43.6% recall. In about 44% of the cases, this
classifier can correctly fingerprint fine-tuned LM
amongst 108 classes; in about 70% of cases the
correct prediction is one of the top-10 guesses.
It is noteworthy that Random Forest which per-
formed exceedingly well in prior work on finger-
printing pre-trianed LMs (Uchendu et al., 2020),
does not perform well for fingerprinting fine-tuned
LMs. Surprisingly, a relatively simple classifier
like GNB achieves comparable precision and re-
call for our top guess. However, CNN outperforms
GNB by a small margin, achieving the best top-10
accuracy of 69.7% for FI-RoBERTa.

5.2 Discussion

Next, we analyze the performance of our best per-
forming RoBERTa feature representation and clas-
sifier (CNN) under different conditions.!
Precision-Recall trade-off. We evaluate the
precision-recall trade-off by imposing a threshold
on the confidence of our prediction. To this end,
we use the gap statistic, defined as the difference
between the probability of the highest and second
highest prediction (Narayanan et al., 2012). If the
gap statistic is lower than our threshold, the clas-
sifier chooses to not make a prediction for the test

! Other baseline results are reported in the appendix.

sample. This invariably has an impact on precision
and recall. Typically, the precision of the classifier
increases, since it can more accurately predict the
correct class for the samples it has a high confi-
dence in. Due to certain samples not being pre-
dicted for, recall is expected to decrease. Note that
since the classifier may make different number of
predictions across classes, micro and macro preci-
sion/recall could be different.

Figures 9a and 9b respectively plot the micro
and macro precision/recall as we vary the gap
statistic. Overall, the classifier using FI-RoBERTa
embeddings achieves a better precision-recall
trade-off compared to using standard RoBERTa
embeddings. As expected, precision improves at
the expense of recall for larger values of gap statis-
tic. Micro precision increases 46% to over 87%
with a reduction in the micro recall from 43% to
27%. Similarly, despite potential class imbalance,
macro precision increases 46% to over 81% with
a reduction in the micro recall from 43% to 26%.
Thus, we conclude that the confidence of our best
performing fingerprinting method can be tuned to
achieve very high precision with some compro-
mise on recall.

Impact of number of training samples. Next,
we evaluate the impact on the performance of our
best models by varying training size from 50 to
800 samples per class. As we vary the training
data, we keep the same test set, i.e., 200 samples
from each class. Figures 8a and 8b, respectively
show that precision and recall of FT-RoBERTa
plateau at around 400 samples per class. Despite at
twice the training data, using training 800 samples
per class has similar precision/recall as compared
to using 400 training samples per class. We con-
clude that having more training samples of syn-
thetic text may not always lead to a significant im-
provement in fingerprinting performance.

Impact of number of classes. We further vary
the number of classes from 10 to 108 and re-
port the performance of our best models. Fig-
ures 8c and 8d show that for a 10-class prob-
lem, FT-RoBERTa + CNN achieves 63.0% preci-
sion and 61.7% recall. As expected, both preci-
sion and recall decrease as the number of classes
increases. For 108 classes, the same classifier
achieves 46.0% precision and 43.6% recall. This
indicates that fingerprinting a fine-tuned LM is
highly challenging when the universe of potential
fine-tuned LMs is larger.
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6 Conclusion

In this paper, we studied the problem of attribu-
tion of synthetic text generated by fine-tuned LMs.
We designed a comprehensive set of feature ex-
traction techniques and applied them on a num-
ber of different machine learning and deep learn-
ing pipelines. The results showed that the best
performing approach used fine-tuned RoBERTa
embeddings with CNN classifier. Our findings
present opportunities for future work on finger-
printing LMs in even more challenging open-
world scenarios, where the list of potential LMs
might be incomplete or synthetic text is not avail-
able to train attribution classifiers.

Ethics and Broader Impact

Any biases found in the gathered dataset are unin-
tentional, and we do not intend to do harm anyone.
We would also like to acknowledge that the use
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tributes to global warming (Strubell et al., 2019).
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and simply fine-tuned them for our work.
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Figure 7: Comparison of different metrics on the syn-
thetic corpus taking the reference of the organic corpus.
The classes are sorted by increasing CHRF scores.

A Appendix

A.1 Implementation, Infrastructure,
Software

We run all experiments on a 24-core machine with
two Intel(R) Xeon(R) Silver 4116 CPU@2.10GHz
CPU’s and 512 GB RAM. Additionally, the server
has a GeForce RTX 2080 Ti (11 GB) GPU card.
We use huggingface, pytorch (1.4.0) and Tensor-
flow (v.1.23.0) to implement and evaluate all deep
learning models in the paper. For classical ML, we
utilize scikit-learn (v.0.23.1). All implementations
are done using Python language (v.3.7).

A.2 Hyper-parameters

Fine-tuned RoBERTa + CNN: We attach 2 CNN
convolutional 1D of kernel sizes 2 and 3 layers
back to back. The stride for both the layers is 1.
The number of output filters for each of the two
convolutional layers is 16. We then attach a batch
normalization layer of size 16. This is followed by
a max pooling layer of size 2 with stride 1. We
fine-tuned the model for 15 epochs and monitored
the validation loss. If the validation loss did not
improve for 5 consecutive epochs, we stopped the
fine-tuning.
Fine-tuned RoBERTa + Dense: We used
RoBERTaForSequenceClassification wrapper
from the huggingface module, which attaches a
softmax layer on top of pre-trained RoBERTa
model. We extracted the embeddings of the
second to last layer of size 1x768. For all of
our models, we used a AdamW optimizer with a
learning rate of 0.00005. We used batch size of 48
and only picked the first 75 tokens of each token.
We did not use any padding.

For the soft classifiers, using the fine-tuned
RoBERTa embeddings, we obtained the best re-

sults with the following parameters -

SVM: C = 0.1, cachesize=200, classweight =
None, coef0 = 0.0, degree=3, gamma=‘scale’,
kernel="‘linear’, tol=0.001
MLP: activation="‘relu’, alpha=0.01,epsilon=1e-
08, hiddenlayersizes = 64, learn-
ingrate=‘adaptive’, learningrateinit=0.0001
RF - criterion=‘entropy’, maxdepth=None,
maxfeatures=‘auto’, maxleafnodes=None, min-
samplesleaf = 1
DT - criterion = ‘entropy’, maxdepth = None,
maxfeatures = None, maxleatnodes=None, min-
samplesleaf = 1

GNB - Default sklearn parameters performed the
best

A.3 Running Time

All fine-tuned models took a maximum of 8 min-
utes per epoch. For the soft classifiers, MLP and
SVM took the maximum time. Due to the large
size of the dataset and the large embedding space,
SVM took about 6 hours to train. MLP took an
average of 3 hours. Rest of the classifiers took less
than an hour for training.

A.4 Additional Results
A.4.1 Additional Dataset Analysis

Besides the analaysis in the dataset section of the
main text, we used 4 metrics - METEOR, BLEU,
GLEU and CHREF for measuring the coherency of
the synthetic text, using the organic text as ref-
erence. Using 1000 comments from each class
of synthetic and organic text, we obtained high
class-wise average scores on all metrics - ME-
TEOR (0.31), BLEU (0.58), GLEU (0.63) and
CHREF (0.51). This provides further evidence that
synthetic text is coherent and readable when com-
pared to its organic counterpart. In figure 7 , we il-
lustrate the scores for each individual class, sorted
by increasing CHRF scores.

A.4.2 Feature extraction

Besides the feature extraction methods we men-
tioned in the Methods section of the main text, we
also experimented with two more methods:

1. Fine-tuned GLTR: Using the training set, we
fine-tuned separate BERT and GPT2 models for
each class for the task of mask completion. All
models were then used for extracting GLTR word
likelihood features for the complete training and
test sets. Subsequently, the training representa-
tions were then fed to a sequential neural classi-
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Base Architecture | Classifier Precision | Recall Top-5 | Top-10
o DT 6.9 6.6 6.6 6.6
Writeprints SVM 03 163 32| 443
DT 57 55| 557 558

GLTR SVM 73 70 10 3.1
DT 63 53 63 6.3

RoBERTa SVM 83 69 78 89
- MLP 204 | 189 | 343 443

Tr Word 5N 286| 270 440 531
Dense 44.0 423 60.8 68.9

FT RoBERTa DT 295 287 287 287
SVM 27 411 383 65.6

Table 3: Results of Decision Tree (DT) and SVM with
the embeddings. We also include the results of the
trainable word embeddings model.

fier like Bi-LSTM. The intuition was that word
likelihoods extracted using the class’s fine-tuned
GLTR model would be high for synthetic text gen-
erated for the class’s language model. For ex-
ample, a r/wallstreetbets fine-tuned GLTR feature
extractor would extract higher word likelihoods,
as compared to other GLTR models, from a syn-
thetic comment generated by the language model
fine-tuned on r/wallstreetbets. However, for an
extremely small setting of 5 classes, we only ob-
tained a precision and recall of around 33% each.
Due to the (a) expensive cost of fine-tuning 108
BERT and GPT2 models, (b) expensive cost of ex-
tracting GLTR features for a dataset of 100k exam-
ples, (c) extremely poor results of the approach on

a small setting, we did not continue with experi-
menting the model in a larger setting.

2. Trainable word embeddings - We tokenized
and represented each comment using an allocated
set of integers based on the vocabulary of the train-
ing set. Then, similar to the GloVE feature extrac-
tion, we passed the representation into a trainable
word embedding layer, followed by MLP or CNN.
The results for these were slightly worse than that
for the GloVE features. We report the results in
Table 3.

Additionally, for all the feature representations
mentioned in the main text, we tested SVM and

decision tree. Overall, they were outperformed by
the other classifiers with one notable exception.
For Writeprints features, SVM showed the best re-
sults of precision and recall of 19.3% and 13.3%
respectively. We report the results in Table 3.

A.5 Other baselines

Precision-recall trade-off. For the precision-
recall trade-off in the results section of the main
text, we presented a comparison with additional
baselines in Figure 9. Fine-tuned RoBERTa per-
forms the best among all methods for both micro
and macro precision-recall trade-offs. They are
followed in a decreasing order by the pre-trained
RoBERTa embeddings, the trainable word embed-
dings, the GloVE word embeddings, Writeprints,
and GLTR respectively.

Training set size and classes. We report the com-
parison with all other baselines for the varying
training size and the number of classes in Fig-
ure 8. Similar to the precision-recall trade-off,
the fine-tuned ROBERTa embeddings perform the
best, followed by pre-trained RoOBERTa embed-
dings, GloVE word embeddings, trainable word
embeddings, Writeprints, and GLTR.
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