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Abstract

We investigate the semantic knowledge of lan-
guage models (LMs), focusing on (1) whether
these LMs create categories of linguistic envi-
ronments based on their semantic monotonic-
ity properties, and (2) whether these categories
play a similar role in LMs as in human lan-
guage understanding, using negative polarity
item licensing as a case study. We introduce
a series of experiments consisting of probing
with diagnostic classifiers (DCs), linguistic ac-
ceptability tasks, as well as a novel DC rank-
ing method that tightly connects the probing
results to the inner workings of the LM. By
applying our experimental pipeline to LMs
trained on various filtered corpora, we are able
to gain stronger insights into the semantic gen-
eralizations that are acquired by these mod-
els.1

1 Introduction

Neural language models (LMs) have become pow-
erful approximators of human language, making it
increasingly important to understand the features
and mechanisms underlying their behavior (Linzen
et al., 2018, 2019). In the past few years, a sub-
stantial number of studies have investigated the lin-
guistic capabilities of LMs (Gulordava et al., 2018;
Giulianelli et al., 2018; Lakretz et al., 2019; Wu
et al., 2020; Ettinger, 2020, i.a.). Such work has
focused primarily on syntactic properties, while
fewer studies have been done on what kind of for-
mal semantic features are encoded by language
models. In this paper, we focus explicitly on what
LMs learn about a semantic property of sentences,
and in what ways their knowledge reflects well-
known features of human language processing.

As the topic of our studies, we consider mono-
tonicity, a semantic property of linguistic envi-

1All code and data can be found at https://github.
com/jumelet/monotonicity-npi-lm

ronments that plays an important role in human
language understanding and inference (Hoeksema,
1986; Valencia, 1991; Van Benthem, 1995; Icard III
and Moss, 2014): the monotonicity of a linguistic
environment determines whether inferences from a
general to a particular term or vice versa are valid in
that environment. For example, the fact that the in-
ference from “Mary didn’t write a paper” to “Mary
didn’t write a linguistics paper” is valid shows us
that the position where “a paper” occurs is down-
ward monotone: the inference is valid when a more
general term (“a paper”) is replaced with a more
specific one (“a linguistics paper”).

To investigate monotonicity we focus on nega-
tive polarity items (NPIs): a class of expressions
such as any or ever that are solely acceptable in
downward monotone environments (Fauconnier,
1975; Ladusaw, 1979). Psycholinguistic research
has confirmed this connection between NPIs and
monotonicity: humans judge NPIs acceptable in
a linguistic environment if they consider that en-
vironment to be downward monotone (Chemla
et al., 2011). Previous research has established that
LMs are relatively successful in processing NPIs
(Warstadt et al., 2019), but without investigating
how they came to these successes.

We raise the following research questions:
RQ1 Do language models encode the monotonicity

properties of linguistic environments?

RQ2 To what extent do they employ this informa-
tion when processing negative polarity items?

We developed a series of experiments, in which
we first evaluate the general capacities of LMs in
handling monotonicity and NPIs and then inves-
tigate the generalization heuristics of the LM by
doing experiments with modified training corpora.
First, we establish that LMs are able to encode a
notion of monotonicity by probing them with diag-
nostic classifiers (DCs, Hupkes et al., 2018) (§5.1).

https://github.com/jumelet/monotonicity-npi-lm
https://github.com/jumelet/monotonicity-npi-lm
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In our second experiment we demonstrate that our
LMs are reasonably successful with NPI licensing
using an NPI acceptability task (§5.2). Next, we
introduce a novel DC ranking method to investi-
gate the overlap between the information that the
model uses to make judgments about NPIs and the
information that the DCs use to predict monotonic-
ity information, finding that there is a significant
overlap (§5.3).

We then investigate two potential confounds
that may obfuscate our results. First, we consider
whether the signal that is picked up by the mono-
tonicity DC is not simply a proxy that tells the
model that an NPI may occur at that position (§5.4).
To assess this, we train new LMs on a corpus from
which all sentences with NPIs have been removed,
re-run the montonicity probing task, and find that
even in the absence of NPI information, LMs are
still able to encode a notion of monotonicity.

Next, we consider whether an LM bases its NPI
predictions on simple co-occurrence heuristics, or
if it can extrapolate from a general notion of mono-
tonicity to cases of NPIs in environments in which
they have never been encountered during training
(§5.5). We again train new LMs on modified cor-
pora, this time removing NPIs only in one specific
environment, and repeat the NPI acceptability and
DC ranking experiments. The results of this setup
demonstrate that LMs indeed use a general notion
of monotonicity to predict NPI licensing.

Contributions With this work, we contribute to
the ongoing study of the linguistic abilities of lan-
guage models in several ways:

• With a series of experiments we demonstrate
that LMs are able to acquire a general notion
of monotonicity that is employed for NPI li-
censing.

• We present two novel experimental setups:
filtered corpus training and DC ranking, that
can be used to assess the impact of specific
information during training and compare the
information used by DCs with the information
used with the model, respectively.

• By using experimental results from psycho-
semantics to motivate hypotheses for LM be-
havior, we find that our models reflect behav-
ior similar to human language processing.

In the remainder of this paper, we will first pro-
vide some linguistic background that helps to situ-
ate and motivate our experiments and results (§2).

We then discuss related work on NPI processing
in LMs in §3. In §4, we discuss our methods and
experimental setup. §5.1 through §5.5 explain and
present the results. We conclude in §6 with a gen-
eral discussion and pointers to future work.

2 Linguistic Background

Monotonicity Monotonicity is a property of a
linguistic environment which determines what kind
of inferences relating general and particular terms
are valid in that environment. If inferences from a
general to a particular term are valid, the linguis-
tic environment is said to be downward monotone
(DM). If inferences are valid the other way around,
from a particular to a general term, the linguistic
environment is said to be upward monotone (UM).

Examples of expressions inducing DM environ-
ments are negation and quantifiers like nobody, no
NP, but also specific types of adverbs and the an-
tecedents of conditional sentences. For instance,
(1) below exemplifies that in these environments
the inference from a sentence with a general term
(cookies) to that sentence with a more particular
term (chocolate cookies) is valid, but not vice versa.

(1) a. Mary didn’t eat cookies. ⇒
Mary didn’t eat chocolate cookies.

b. Nobody ate cookies. ⇒
Nobody ate chocolate cookies.

c. Mary rarely ate cookies. ⇒
Mary rarely ate chocolate cookies.

Common examples of UM environments are (non-
quantified) positive sentences, quantifiers such as
somebody, many NP, and other kind of adverbs. (2)
exemplifies that in these environments the infer-
ence from a sentence with a more particular term
(chocolate cookies) to the same sentence with a
general term (cookies) is valid, but not vice versa.

(2) a. Mary ate chocolate cookies. ⇒
Mary ate cookies.

b. Everyone ate chocolate cookies. ⇒ Ev-
eryone ate cookies.

c. Mary often ate chocolate cookies. ⇒

Mary often ate cookies.

NPIs NPIs are expressions such as the English
words any, anyone, ever, whose acceptability de-
pends on whether its linguistic environment is
downward monotone (Fauconnier, 1975; Ladu-
saw, 1979; Dowty, 1994; Kadmon and Landman,
1993; Krifka, 1995; Lahiri, 1998; Chierchia, 2006,
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2013).2 While the conditions for NPI acceptability
are complex, a good approximation is that NPIs
are acceptable (or licensed) in the syntactic scope
of NPI licensors that induce a DM environment.3

If we again consider the DM environment of (1-a)
and the UM environment of (2-a), it can be seen
that English any is an NPI, as it is acceptable when
inside the syntactic scope of negation (a DM ex-
pression) as in (3-a), and not acceptable when they
are in an UM environment as in (3-b).

(3) a. Mary didn’t eat (any) cookies.
b. Mary ate (*any) cookies.

Importantly, monotonicity plays a role at the psy-
chological level: human judgments about the mono-
tonicity of a linguistic environment predict their
judgments of NPI acceptability in that environment
(Chemla et al., 2011; Denić et al., 2021). For ex-
ample, how plausible someone finds the inference
(1-a) predicts how acceptable they find the sentence
(3-a). Summing up, NPI licensing has a syntactic
component (NPIs must reside in syntactic scope
of a licensor) and a semantic component (NPI li-
censors are DM expressions), that are connected
on a psychological level (monotonicity judgments
predict NPI acceptability). Our research aims to
uncover whether this connection is exhibited by
LMs as well.

3 Related work

The literature on interpreting LMs has grown sub-
stantially in the last few years (see, e.g. Belinkov
and Glass, 2019; Alishahi et al., 2019; Rogers et al.,
2021, for survey papers). Several studies investi-
gate how they process NPIs, focused mainly on the
syntactic aspect of NPI licensing.

Jumelet and Hupkes (2018) conclude that LSTM
language models encode information about the de-
pendency between the NPI and the NPI licensor,
although this effect diminishes as the distance be-
tween the NPI and its licensor grows. Marvin and
Linzen (2018) study NPI judgments of LMs on
minimally different sentence pairs (with the NPI
licensor either in an appropriate syntactic configu-
ration or not) and find that their models are unable
to reliably assign higher probability to sentences in

2See however Zwarts, 1995; Giannakidou, 1998; Barker,
2018 for different takes on NPI acceptability generalizations.

3An NPI occurs in the syntactic scope of a licensor if the
licensor c-commands the NPI. An NPI licensor c-commands
an NPI if the NPI is the licensor’s sister node or one of its
sister’s descendants in a constituent tree (Reinhart, 1976).

which NPIs are correctly licensed. The syntactic
aspect of NPI licensing is also examined by Futrell
et al. (2019), who demonstrate that LSTM LMs are
susceptible to learning spurious licensing relation-
ships, a finding that Warstadt and Bowman (2020)
demonstrate to also hold for BERT (Devlin et al.,
2019). Wilcox et al. (2019) investigate how explicit
syntactic supervision of LMs affects their success
with syntactic aspects of NPI licensing. The broad
linguistic suites of Warstadt et al. (2020) and Hu
et al. (2020) also contain a set of tasks related to
NPI licensing, demonstrating that it is one of the
most challenging tasks for LMs to handle. We-
ber et al. (2021) investigated the dynamics of NPI
learning during training, and connected this to a
multi-task learning paradigm, demonstrating that
LMs are able to efficiently leverage information
from related licensing environments.

Lastly, Warstadt et al. (2019) examine BERT’s
ability in determining NPI acceptability. They
demonstrate that BERT has significant knowledge
of the dependency between NPIs and their licen-
sors, but that this success varies widely across dif-
ferent experimental methods. Our study builds
on that of Warstadt et al. (2019). Although they
demonstrate that BERT is generally successful with
NPI licensing, their results do not reveal whether
BERT has constructed a more general category
of DM expressions that is independent of colloca-
tional cues, nor whether it has understood that this
category matters for NPI licensing.

4 Methods

Before getting to the main experimental part of our
work, we briefly discuss the training corpus, model
architecture and evaluation corpus we consider.

Training Corpus The base training corpus we
consider in our experiments is the corpus used by
Gulordava et al. (2018). This corpus is a collec-
tion of sentences from Good and Featured English
Wikipedia articles and consists of over 90M to-
kens. The vocabulary of the corpus consists of the
50.000 most frequent tokens in this corpus; less fre-
quent tokens are mapped to a special <unk> token.
We refer to the full training corpus type with the
name Full, and to the LMs trained on this corpus as
Full LMs. In addition to Full, we use multiple other
corpora which are derived from Full by means of
filtering. This will allow us to draw conclusions
about specific generalization abilities and reliance
on collocational cues of LMs; filtered corpora will
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Environment Class Abbrev. DM example UM example

Adverbs ADV A lady rarely ever ... *A lady sometimes ever...
Conditionals COND If the dancers see any ... *While the dancers see any...
Determiner Negation D-NEG No teacher says that the students had practiced at all. *Some teacher says that the students had practiced at all.
Sentential Negation S-NEG The dancer was not saying that the guy had profited yet. *The dancer was really saying that the guy had profited yet.
Only ONLY Only the boys had ever ... *Even the boys had ever ...
Quantifiers QNT Every senator who had ever ... *Some senator who had ever ...
Embedded Questions QUES The patients wonder whether the lady admires any ... *The patients say that the lady admires any...
Simple Questions SMP-Q Did the boy ever listen? *The boy did ever listen.
Superlatives SUP A lady buys the oldest dish that the adult had ever ... *A lady buys the old dish that the adult had ever ...

Table 1: The nine environment classes of Warstadt et al. (2019), with an example of a minimal DM/UM pair for
each class taken from the corpus.

be introduced in the relevant sections.

Model Architecture In our studies, we focus on
recurrent language models. More specifically, fol-
lowing Gulordava et al. (2018), we consider two-
layer LSTM language models, with an embedding
and hidden size of 650. All training runs across our
experiments follow the same regime, identical to
the regime described by Gulordava et al. (2018):
40 epochs of training with SGD, with a plateau
scheduler and an initial learning rate of 20, a batch
size of 64, BPTT length of 35, and dropout of 0.1.4

Evaluation Corpus To assess monotonicity and
NPI licensing knowledge of LMs in our experi-
ments, we leverage the NPI corpus of Warstadt
et al. (2019), which consists of a large amount
of grammatical and ungrammatical sentences with
NPIs. This corpus is divided into 9 distinct envi-
ronment classes, allowing for fine-grained analy-
sis of NPI licensing. Importantly, these nine en-
vironment classes come in two versions: a DM
version—in which NPIs are grammatically accept-
able, and a minimally different UM version—in
which they are not. We provide an overview with
examples of DM and UM versions of all environ-
ment classes in Table 1. The full size of the corpus
is 106.000 distinct DM sentences, and the division
of environment classes is split roughly uniformly.

5 Experiments and Results

In this section we describe the experimental
pipeline in more detail. A graphical overview of
our experiments is depicted in Figures 1 and 4.
Each experiment description is directly followed
by an analysis of its results.

4Models are trained on a GeForce 1080 Ti GPU, take
around 40 hours to train, and consist of 71M parameters.

5.1 Experiment 1: Do LMs represent
monotonicity information?

In our first experiment, we test whether LMs
trained on our Full corpus possess a notion of mono-
tonicity. We train five different LMs and test how
well they represent monotonicity properties of dif-
ferent environments by training linear diagnostic
classifiers (DCs, Hupkes et al., 2018) on top of
the hidden states of the LM. To create a corpus
of monotonicity sentences for training and testing
the DCs, we leverage the corpus of Warstadt et al.
(2019), now selecting all DM and UM sentences
to build up a balanced corpus of these categories.
The nine environment classes in that corpus hence
provide a broad spectrum of DM environments and
their minimally different UM counterparts.

For training and testing the DCs, we consider
the hidden states at the position directly before an
NPI occurs (see Figure 1). The reason we train the
DCs at this position is because only at this point we
are sure that the monotonicity information should
surface and be encoded linearly. This is due to the
fact that the decoder of the LM that transforms a
hidden state into a probability distribution is linear
as well: if the probability of some token depends
on a linguistic feature, this feature must hence be
encoded linearly. The DCs are implemented using
the diagNNose library of Jumelet (2020), and
trained using 10-fold cross-validation, Adam opti-
mization (Kingma and Ba, 2015), a learning rate
of 10−2 and L1 regularization with λ = 0.005.

We train our monotonicity DCs in two separate
ways. First, we divide the entire monotonicity cor-
pus into a 90/10 train/test split, sampled uniformly
across the different environment classes. This al-
lows us to examine whether DM and UM envi-
ronments are linearly separable in a way that is
applicable to all environment classes. We refer to
this classifier as the All-ENV DC.

Second, we move to a more fine-grained type
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Figure 1: The pipeline of our experimental setup. We start by computing the hidden states h↓t (within a DM
environment ahead of the NPI) and h↑t (within a UM environment). These hidden states are then used for training
the monotonicity DC (Exp. 1 & 4), and to compare PLM(NPI∣h↓t ) > PLM(NPI∣h↑t ) (Exp. 2 & 5a). The task of
Experiments 3 and 5a can be found in Figure 4. Experiments 4 and 5 consist of the same tasks as the first three
experiments, but differ in the language model that is used.

of analysis. High performance of the All-ENV DC
namely does not provide evidence that monotonic-
ity is encoded the same way for each environment:
the set of salient hidden units used by the All-ENV
DC for classifying monotonicity within the Ad-
verbs environment, for example, could be disjoint
from the set of units used for the Only environment.
To investigate this, we train a DC on the hidden
states of all-but-one environment class, and test its
performance on the excluded class. This provides
a measure to what extent the monotonicity repre-
sentation of DM and UM environments derived
from all other environment classes generalizes to
the held-out class, demonstrating stronger evidence
that the model represent monotonicity in the same
way across different environments.

Results The results of our first experiment are
shown in the top row of Figure 2. The first column
contains the average accuracy for the All-ENV DC,
and it can be seen that the diagnostic classifier suc-
ceeds in this task with high accuracy (97%). This
indicates that the uniform split over all environment
classes is linearly separable.

Next, we consider the held-out evaluation pro-
cedure for each of the nine environment classes.
It can be seen that the monotonicity signal gen-
eralizes well to five classes (adverbs, determiner
negation, only, sentential negation, and embedded
questions), all with an accuracy above 90%. The
other four classes yield a higher standard deviation,
indicating that these classes are encoded less con-
sistently across initialization seeds. The accuracy

for all held-out DCs is lower compared to the All-
ENV DC results, indicating that the All-ENV DC
relied partly on information unrelated to a shared
notion of monotonicity. The fact that the accuracy
of these DCs is still so high, however, indicates
that there is a substantial overlap between the way
that monotonicity is encoded within the different
environments.

5.2 Experiment 2: Do LMs predict the
licensing conditions of NPIs?

In the next experiment we investigate the NPI ac-
ceptability judgments of the Full LMs on the corpus
of Warstadt et al. (2019). This is done by compar-
ing the probability of an NPI conditioned on the
model’s representation of a DM environment (h↓t )
and a UM environment (h↑t ), where success is de-
fined as follows:

PLM(NPI∣h↓t ) > PLM(NPI∣h↑t )

This is a common evaluation procedure in the inter-
pretability literature (Linzen et al., 2016), and has
earlier been applied in the domain of NPI licens-
ing by Jumelet and Hupkes (2018) and Warstadt
et al. (2020). Our approach is similar to the Cloze
Test of Warstadt et al. (2019), but their setup used
(bi-directional) masked LMs, making it possible
to directly compare the probabilities of the NPI li-
censor, instead of comparing the NPI probabilities.
Note that we purposefully do not base NPI accept-
ability on comparing full sentence probabilities: in
our view this type of comparison can be distracted
by token probabilities not related to the NPI itself.
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Full (exp. 1) 0.97±0.01 0.93±0.02 0.81±0.16 0.97±0.01 0.91±0.02 0.94±0.03 0.78±0.05 0.93±0.06 0.80±0.08 0.66±0.04

Full \ NPI (exp. 4) 0.95±0.01 0.88±0.02 0.89±0.11 0.94±0.01 0.86±0.04 0.95±0.02 0.77±0.03 0.89±0.05 0.78±0.05 0.57±0.03

All-ENV ADV COND D-NEG S-NEG ONLY QNT QUES SMP-Q SUP
DC evaluated on held-out environment class

Monotonicity probing accuracy

Figure 2: Accuracy and standard deviation on the monotonicity diagnostic classification task, averaged over 5
seeds for each model type. The All-ENV column denotes train/test split procedure sampled uniformly over all
environment class; other columns denote accuracy on one environment class that has been excluded during training.

Full (exp. 2) 0.88±0.03 0.80±0.03 0.93±0.03 0.82±0.02 0.84±0.03 0.79±0.02 0.85±0.02 0.72±0.01 0.76±0.02

Full \ ENV NPI (exp. 5a) 0.81±0.00 0.65±0.04 0.89±0.04 0.69±0.06 0.74±0.05 0.69±0.01 0.83±0.05 0.68±0.00 0.72±0.01

ADV COND D-NEG S-NEG ONLY QNT QUES SMP-Q SUP
Environment class

NPI acceptability accuracy

Figure 3: Accuracy on the NPI acceptability task—based on whether the NPI was assigned a higher probability in
the DM environment than in its UM counterpart.

We split this procedure out for each of the nine
environment classes. The example sentence of the
Simple Questions environment in Table 1, for ex-
ample, is evaluated as follows:

PLM(ever∣Did the boy) > PLM(ever∣The boy did)
Using the full sentence probabilities for this com-
parison would require taking probabilities into ac-
count such as PLM(the∣Did) and PLM(boy∣The),
that have no relation to NPI licensing at all.

Results We present the results for this experi-
ment in the top row of Figure 3. The Full models
demonstrate a considerable ability at predicting
NPI acceptability, with the least performing class
(SMP-Q, Simple Questions) yielding an accuracy
that is still well above chance (0.72). Compared to
earlier investigations on the ability of LSTM LMs
in NPI licensing, our results indicate that these
models are able to obtain a more sophisticated un-
derstanding of NPIs than previously thought: both
Marvin and Linzen (2018) and Hu et al. (2020)
report LSTM performance below chance on NPI
acceptability tasks. This might in part be due to the
different evaluation procedure we used (conditional
vs. full-sentence probability comparison).

5.3 Experiment 3: Is the LM’s knowledge of
DM environments and of NPI licensing
related?

We have now established that our models encode a
signal related to monotonicity, and are successful

DC↓
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=

•••

•••

•• •••

•• •••

•••

sim(     , ↓)
sim(     , ↓)
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sim(        , ↓)

SORT  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•• •••
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COSINE SIMILARITY  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DC↓ weights

Exp. 3&5b: DC Ranking

Figure 4: The DC Ranking experiment, in which we
investigate whether the monotonicity DC and the LM
decoder base their predictions on similar cues, by com-
puting and ranking the cosine similarities between the
DC weights and the decoder weights of each token.

at predicting NPI acceptability. In our third experi-
ment, we assess to what extent the parameters used
by the LM to predict NPIs (i.e. the LM’s decoder
embeddings for NPIs) overlap with the information
the DCs use to predict the monotonicity properties
of a particular environment class. For this we have
devised a novel DC ranking method, that ranks
the LM’s decoder weights for all tokens based on
their similarity with the DC weights.

We present a schematic overview of the method
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Full (exp. 3) 9 14 1121 16 28 449 206 82 14124 1248
Full \ ENV NPI (exp. 5b) 10 35 6634 622 1152 1418 1509 297 28670 3288

All-ENV ADV COND D-NEG S-NEG ONLY QNT QUES SMP-Q SUP
Environment class monotonicity DC trained on

LM decoder & monotonicity DC cosine similarity  Median NPI rank

Figure 5: Results on the median NPI rank task. A low median rank indicates that the monotonicity DC uses the
same representational information as the NPI decoder.

in Figure 4. The LM’s decoder weight matrix
can be interpreted as a collection of vectors cor-
responding to each token in the model’s vocabulary.
The monotonicity DC is a binary classifier, so its
weights are represented by a single vector. The
LM’s decoder vectors are of the same dimension-
ality as the weight vector of the monotonicity DC,
which allows us to compute the similarity between
each decoder vector and the monotonicity DC. For
each of the 50.000 tokens in the LM’s vocabulary,
we calculate the cosine similarity between the de-
coder weights corresponding to that token and the
DC’s weights. We then sort these similarity scores,
which results in a ranking of tokens that are most
similar to the DC.

As we are interested in finding the connection of
the monotonicity DC and the LM’s NPI processing
in general, we compute the median rank over a
set of 11 NPIs.5 A low median NPI rank indicates
that the LM uses the same cues for NPI prediction
as the monotonicity DC, demonstrating a clear con-
nection between NPI licensing and monotonicity.

Contrary to Experiment 1, we no longer make
use of the hold-one-out training procedure, that
gave insights to what extent a general monotonicity
signal generalizes to a held-out environment class.
Instead, we train a separate diagnostic classifier
for each environment class using a train/test split
made up of DM and UM environments within that
class. This results in a classifier that represents the
class-specific decision boundary between minimal
pairs of DM and UM items and allows us to investi-
gate to what extent these decision boundaries align
with the weights of the LM decoder. Next to the
environment-specific DCs we also report the DC
ranking outcome for the All-ENV DC that has been
trained on all environments.

5We consider the following 11 single-token NPI expres-
sions: dared, any, anybody, anymore, anyone, anything, any-
where, ever, nor, whatsoever, and yet. These are all the single-
token NPIs taken from a list of NPIs that is described in §5.4.

Results The results of this experiment are pre-
sented in the top row of Figure 5. The first column
(All-ENV) contains the result for the DC trained
on all environment classes, and the median NPI
rank of 9 demonstrates that the monotonicity DC
aligns very closely with the NPI decoder weights of
the LMs. This median rank should be interpreted
within the context of the model vocabulary size:
it can range upwards to 50.000, so a rank that is
close to 0 signifies a tight connection between the
probing task and the tokens of interest.

Moving on to the environment-specific results,
it can be seen that the results vary considerably
between the environment classes. The worst scor-
ing class is again that of Simple Questions. This
makes sense, as the licensing conditions for ques-
tion constructions do not depend on the presence
of a specific licensing token such as not, but on
the overall structure of the whole sentence. The
other environment classes lead to scores far closer
to 0, indicating that for these classes monotonicity
classification is closely aligned to NPI processing.

Interestingly, the median rank of the All-ENV
DC is lower than the ranks of all other DCs. This
shows that the model has aligned its representation
of NPIs to an aggregate of the monotonicity rep-
resentations in the different environment classes.
This allows the model to flexibly deal with NPIs in
a wide range of licensing environments.

5.4 Experiment 4: Are NPIs important for
learning monotonicity information?

With Experiment 3 we established that NPI pro-
cessing and monotonicity are related in our LMs.
Now, we investigate to what extent their represen-
tations are entangled during training. More specifi-
cally, we investigate if the signal from the presence
of NPIs is indispensable for the LM to develop a
notion of monotonicity, or if instead the success
in categorizing monotonicity environments can be
learned independently of NPIs.

We address this question by testing whether LMs
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can still classify the monotonicity properties of en-
vironments when they are completely deprived of
NPIs during training. To do so, we train new lan-
guage models on a modified corpus that does not
contain any NPIs at all. To arrive at this corpus,
we remove all sentences that contain at least one
NPI expression from the Full corpus. We identify
these expressions based on a comprehensive list of
NPI expressions in English collected by Hoeksema
(2012) and the list of NPIs in English compiled by
Israel (2011). From this list, we manually removed
expressions that have both NPI and non-NPI uses
(e.g. a thing, a bit). The 40 NPI expressions that
resulted from this procedure can be found in Ap-
pendix A. We train 5 models on this corpus and
refer to them by the name Full\NPI.

In this experiment, we run the monotonic-
ity probing procedure of Experiment 1 on the
Full\NPI models. We posit that if the notion of
monotonicity can be learned independently of NPIs,
there should be no significant drop in performance
compared to the results of the Full LMs.

Results We report the results of this experiment
in the bottom row of Figure 2. Again it can be
noted that the All-ENV DC, trained and tested uni-
formly over all environment classes, obtains a high
accuracy on the task (0.95). Furthermore, none of
the held-out environment DCs lead to significant
drops in performance compared to the Full LMs.
Based on this we conclude that even in the absence
of NPI cues, LMs are still able to build up a shared
robust notion of monotonicity.

5.5 Experiment 5: How robust is the
connection between monotonicity and
NPI processing?

This research aims to uncover whether LMs pos-
sess a robust connection between monotonicity and
NPI licensing. Our findings indicate that this con-
nection is present in our models. A major confound
that has not yet been addressed, however, is the ex-
tent to which our models rely on collocational cues
when judging the acceptability of an NPI. To test
this, we examine whether an LM’s connection be-
tween NPIs and monotonicity generalizes to novel
environment classes in which NPIs have never been
encountered during the training phase of the LM.

We have created nine modified corpora in which
sentences with NPIs within a specific environment
have been removed. For these different corpora,
we again consider the nine NPI-licensing environ-

ments of Warstadt et al. (2019). For each environ-
ment class we create a new corpus by removing
all sentences from the Full corpus in which an NPI
expression from Appendix A is preceded by an ex-
pression belonging to that class, somewhere earlier
in the sentence.6 Note that we only remove the sen-
tences in which the environment actually licenses
an NPI; sentences in which the environment occurs
without an NPI are retained. So for the adverbs en-
vironment, for example, we remove sentences like
“Mary rarely ate any cookies” but not “Mary rarely
ate cookies”. For each of these nine corpora we
train 3 new LMs. Models trained on these corpora
are referred to by the name Full\ENV∩NPI.

We run the NPI acceptability task of Experiment
2 and the DC ranking method of Experiment 3 on
the nine types of Full\ENV∩NPI models. A model
with a robust connection between monotonicity and
NPI processing should be able to learn for NPIs
in the held-out environment that (i) the environ-
ment belongs to the class of environments in which
NPIs are licensed, and that (ii) determining NPI ac-
ceptance should be done based on representational
cues that are similar for monotonicity prediction.

Results We report the results of this experiment
next to the previous results of the Full model. First,
we consider the NPI acceptability task, which is
reported in the bottom row of Figure 3. Note that
each cell in this row now corresponds to a spe-
cific model type: the ADV result, for instance, cor-
responds to the accuracy of the Full\ENV∩NPI
models in which sentences with NPIs within adver-
bial environments have been removed. Our results
show that the performance drops slightly for all
environment classes, which can be attributed to a
model’s dependence on collocational cues. How-
ever, the models are still able to adequately general-
ize from the other environments, in which NPIs still
are encountered, to the held-out environment. This
demonstrates the semantic generalization capaci-
ties of the LM: it infers that the held-out environ-
ment in which NPIs have never been encountered
shares some relevant properties with the other eight
environment classes in which NPIs still occur.

The results for the DC ranking experiment are
shown in the bottom row of Figure 5. Similar to the
NPI acceptability results, the performance of the
Full\ENV∩NPI models has dropped slightly com-
pared to the Full models. However, if the models

6For Simple Questions we remove a sentence if an NPI
occurs in a sentence that ends with a question mark.
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would no longer pick up on the connection between
monotonicity in the held-out environment and NPI
licensing at all, these median ranks should drop to
chance, i.e. around the halfway mark of the vocab-
ulary size (25.000). It can be seen that this is only
the case for the Simple Questions environment, that
was already performing poorly for the Full models.
Based on this we conclude that although models
depend partly on collocational cues for their con-
nection between monotonicity and NPIs, they are
still able to encode a robust connection that gener-
alizes to novel DM environments.

6 Conclusion

Based on a series of experiments, we have estab-
lished the following: (1) LMs categorize environ-
ments into DM and UM; (2) LMs are overall suc-
cessful with NPI licensing; (3) LMs employ sim-
ilar representational cues when processing NPIs
and predicting monotonicity; (4) their categories of
DM and UM environments can be learned indepen-
dently of NPI occurrence; and (5) their connection
between monotonicity and NPI processing is ro-
bust and not solely dependent on co-occurrence
heuristics. This demonstrates that LMs have quite
sophisticated knowledge of NPI licensing, which
may be similar to that of humans and constitutes a
vital step towards better understanding the linguis-
tic generalization capacities of LMs.

These results raise the question: what do LMs
learn about the DM and UM environments which
they succeed in finding? Do they actually learn
the inferential properties of those environments,
or do they rely on some other property that DM
environments have in common to categorize them
as such? A direction for future work would be to
develop methods to probe the inferential capacities
of LMs and explore how they align with the DM
and UM categories they construct.

Another direction for future work would be to
incorporate the recent advancements on probing-
based interpretability methods in our experimental
pipeline (Hewitt and Liang, 2019; Voita and Titov,
2020). Our DC Ranking method aligns the perfor-
mance of a probe with that of the language model
itself, which is related to the approaches of Saphra
and Lopez (2019), Elazar et al. (2021), and Lover-
ing et al. (2021). Placing our methodology more
firmly in this body of work will allow for stronger
conclusions to be drawn regarding the semantic
knowledge of current language models.
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A Filtered NPIs

We here present the full list of NPIs that were used
for filtering sentences from the Full corpus, result-
ing in the Full\NPI corpus. The method for se-
lecting these expressions is described in Section
5.4.

A damn, any, any longer, any old, anybody, any-
more, anyone, anything, anything like, anytime
soon, anywhere, anywhere near, as yet, at all, avail,
by much, can possibly, could possibly, ever, in any,
in days, in decades, in minutes, in years, just any,
just yet, let alone, much help, nor, or anything, set
foot, squat, such thing, that many, that much, that
often, the slightest, whatever, whatsoever, yet.

This resulted in a reduction of 75.062 sentences
out of the 3.052.726 sentences in the original Full
corpus (2.46%).


