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Abstract

Defeasible reasoning is a mode of reasoning
where conclusions can be overturned by tak-
ing into account new evidence. A commonly
used method in cognitive science and logic lit-
erature is to handcraft argumentation support-
ing inference graphs. While humans find in-
ference graphs very useful for reasoning, con-
structing them at scale is difficult. In this pa-
per, we automatically generate such inference
graphs through transfer learning from a related
NLP task that shares the kind of reasoning that
inference graphs support. Through automated
metrics and human evaluation, we find that our
method generates meaningful graphs for the
defeasible inference task. Human accuracy on
this task improves by 20% by consulting the
generated graphs. Our findings open up excit-
ing new research avenues for cases where ma-
chine reasoning can help human reasoning.1

1 Introduction

Defeasible inference (Rudinger et al., 2020) is a
mode of reasoning in which given a premise P
(Rob went for a hike), a hypothesis H (Rob saw
an elephant, it was pink) may be weakened or
overturned in light of new evidence i.e., an up-
date U (Rob often has hallucinations). Given the
non-monotonic nature of this reasoning, humans
find it challenging to master this task (Morgan,
2004). This problem has been widely studied in
classical AI through logic (Israel, 1980; McCarthy,
1981), and in cognitive science through argumenta-
tive models (Pollock, 1987). A prominent approach
is to support defeasible inference through argumen-
tations by constructing an inference graph (Pollock,
2009).

∗Equal Contribution
1A dataset of 230,000 influence graphs for each de-

feasible query is located at: https://tinyurl.com/
defeasiblegraphs.

Despite their prominence (Bentahar et al., 2010),
argumentative models are not scalable because an
inference graph needs to be handcrafted for every
example. Recently, Rudinger et al. (2020) proposed
two auxiliary tasks related to defeasible inference:
(i) an NLI task to predict whether an update U
would weaken or strengthen a hypothesis H, and
(ii) a generative task to generate an update U given
a premise P and a hypothesis H. However, this
only addresses a part of the problem because their
inference is still not supported by the line of rea-
soning that a human typically uses to solve this
task, namely mediators (e.g., hallucinations can be
deceptive) and contextualizers (some elephants can
have mutated gene which makes them look differ-
ent) that are inherently embedded in an inference
graph, limiting their utility for humans (figure 1).

In this paper, we adopt the concept of an infer-
ence graph for defeasible reasoning from cognitive
science and provide a computational model to make
their generation scalable. Training such a model
would require a large amount of annotated infer-
ence graphs, which will be too expensive to obtain.
Instead, our solution is to draw a parallel to a re-
lated reasoning task in NLP (Tandon et al., 2019),
where the reasoning is supported by a graph that we
find has similarities with the kind of reasoning that
an inference graph supports. We train a model that
can learn from the NLP task and effectively transfer
it to generate inference graphs. Such transfer learn-
ing is made possible due to the powerful seq-to-seq
neural language models that did not exist before.

The contributions of this paper are the answers
to the following two research questions:

RQ1 Can we automate the construction of the ar-
gumentation supporting inference graphs? In
§2, we show that we can effectively construct
meaningful graphs using transfer learning.

RQ2 Can our generated graphs help improve hu-

https://tinyurl.com/defeasiblegraphs
https://tinyurl.com/defeasiblegraphs
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Figure 1: (a) An example of an Inference Graph adapted from Pollock (2009) and (b) Structure of an Influence
Graph adapted from WIQA (Tandon et al., 2019) dataset. The adapted influence graph incorporates the contextual-
izers, mediators, hypotheses and situations, making them useful for defeasible reasoning.

man performance? In §3, we show that humans
leverage generated graphs to improve their per-
formance on a previously reported benchmark.

2 RQ1: Generating argumentation
supporting Inference Graphs

We start by drawing parallels to a counterfactual
reasoning task in NLP - the WIQA (Tandon et al.,
2019) task. WIQA consists of a set of procedural
passages, each accompanied by a human-curated
influence graph. The influence graph captures the
causal influences between the events in the con-
text of the process described by the passage. We
draw a connection between inference graphs (Pol-
lock, 2009) and influence graphs (Tandon et al.,
2019) by drawing parallels between their reasoning
structures. In essence, each inference graph from
Pollock (1987) can be instantiated via an influence
graph from Tandon et al. (2019) by interpreting the
nodes in both the graphs as follows (Figure 1):

i. Contextualizers (C): these nodes set the con-
text around a situation and connect to the P
in some way.

ii. Updates (U): these nodes are new situations
that emerge which might overturn an infer-
ence.

iii. Hypothesis (H): Hypothesis nodes describes
the outcome/conclusion of the situation.

iv. Mediators (M): Mediators are nodes that
help bridge the knowledge gap between a sit-

uation and a hypothesis node by explaining
their connection explicitly.

Figure 1 presents an example to highlight the
similarities between the two graphs by labeling an
example node adapted from (Pollock, 2009), and
the structure of the influence graph from (Tandon
et al., 2019) with the four node types that we de-
fined above. A green edge indicates that the source
node has a positive influence on the target node,
and a red edge indicates a negative influence. Fur-
ther, each node can either act as a strengthener (+)
or a weakener (-) for the hypothesis. Consequently,
these graphs can support similar type of reasoning
e.g., the effect of U on H and how this can change
in light of external influences (C) is captured by
graph paths C+ to U and from U via a mediator
node (M+/M-) to H. Inspired by these similari-
ties, we hypothesize that influence graphs can be
used to supplement defeasible reasoning.

2.1 Influence Graphs Generation

To obtain an influence graph for each defeasi-
ble query, we perform a zero-shot transfer from
WIQA (Tandon et al., 2019), a corpus of 2100 (pas-
sage, influence graphs) pairs.2.

Training : We treat influence graph generation as
a sequence-to-sequence mapping task. We leverage
WIQA to derive parallel data {(seqiip, seqiop)}Ni=1

for the task. Let (Ti,Gi) be a sample in WIQA,

2Dataset details in the Appendix §E.
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where Ti is the passage text (e.g. describing how
viruses spread), and Gi is the corresponding influ-
ence graph (e.g., Figure 2). To create tokens of the
input sequence seqiip, the model trains best with
explicit markers:3

seqi
ip = Premise: Ti | Update: Ui | less/ more: Hi (1)

where Ti is the passage text (e.g. steps describing
how viruses spread) and Ui and Hi are nodes of
Gi (these are phrases as shown in Figure 2).

Figure 2: An example of an influence graph similar to
ones in WIQA that we train on.

The output seqiop is set to a DOT-string repre-
sentation of the corresponding influence graph Gi,
as such a representation was shown to be effec-
tive at extracting high-quality graphs (Madaan and
Yang, 2021) from free-form text using language
models (examples in the appendix). Thus, each
passage-graph pair (Ti,Gi) from WIQA is mapped
to an input-output pair D = (seqiip, seq

i
op). We

use this corpus to fine-tune an autoregressive lan-
guage model L for graph generation. Essentially,
the fine-tuned L allows us to efficiently sample an
influence graph for a given input sequence seqjip by
drawing samples from Gj ∼ Pθ(y | seqjip) using
greedy sampling, where θ denotes the parameters
of the language model.

Zero-shot Transfer to Defeasible Inference :
We use the model L trained on WIQA to gener-
ate inference graphs on the defeasible inference
dataset by Rudinger et al. (2020). We obtain an
influence graph for each defeasible input (P, H,

3An example shown in Appendix §A.

U) by converting it to an input sequence that can
be fed to L by filling the template (1). This con-
version from (P, H, U) to template (1) is done by
setting the premise P as the context passage T, the
update U as the node U, and the attenuated and
strengthened outcomes are simulated by prefixing
the hypothesis H with the tokens Less and More
respectively. This input is then passed to the L to
generate an influence graph.

Results on Influence Graph Generation We
use T5-11B (Raffel et al., 2020) fine-tuned on D
derived from WIQA (§2.1) as our graph genera-
tion language model (L). All the graphs generated
by our model were in valid DOT format. We use
the standard generation metrics BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) to evaluate
L on the test split of WIQA. Each node Ni in the
reference graph is compared with the correspond-
ing generated node N̂i using BLEU(Ni, N̂i) (Node-
BLEU). Further, node-edge-node pairs (neigh-
bors) (Ni, Nj) and (N̂i, N̂j) are compared using
Rel-BLEU = HM(BLEU(Ni, N̂i),BLEU(Nj , N̂j))
where HM is the harmonic mean. These metrics
are averaged over the graph (i.e., across the nodes
and the edges), and further averaged across the
corpus. We perform these experiments across two
different language models: GPT-2-MEDIUM (Rad-
ford et al., 2019) and T5-11B. Finally, we calculate
the overlap in the edge structures of the reference
and generated graphs match as Edge-MATCH%. We
report the numbers in Table 1, and include a ran-
dom baseline for reference. A random baseline
will correctly generate the nodes S, H+, and H-
as they are part of the query (38 nodes). As nei-
ther of these nodes are connected to another, the
random baseline will likely not generate any node
pair correctly ( Rel-BLEU ∼ 0). Since two unique
graph structures are possible (Tandon et al., 2019),
a random baseline would get Edge-match ∼ 50%.
Table 1 shows that our T5-based model is able to
generate syntactically valid (high edge-match) and
semantically meaningful graphs. Additionally, we
find that our generated graphs are helpful to hu-
mans on a downstream task, as described next.

3 RQ2: Do generated graphs help
humans at defeasible reasoning?

Human Evaluation Rudinger et al. (2020) per-
formed a human evaluation on 2000 defeasible
queries, where given (P, H, U), the task was to la-
bel the nature of the effect of U on H as Intensifies
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Model Random GPT-2-MEDIUM T5-11B

Node-BLEU 37.5 46.05 50.94
Rel-BLEU 0.0 19.34 33.01
Edge-match% 50.0 92.86 97.63

Table 1: Results on automated metrics showing that our
T5-11B model is able to generate very accurate graph
structure and meaningful nodes that sufficiently match
the reference nodes.

or Attenuates. Three human judges labeled each
query, and the majority label was then compared
with the ground-truth to ascertain the accuracy. In
their setup, human judges were collectively right on
1745 samples (correct pool) and wrong on 255 sam-
ples (wrong pool). We create a challenging pool
of 510 queries for the human judges by combining
the 255 queries in the wrong pool with 255 queries
sampled from the correct pool, giving a baseline ac-
curacy of 50% for this eval pool. Each query in this
pool is supplemented with a generated influence
graph (§2).4 We found that our generated influence
graphs showed high-levels of redundancy in con-
textualizers and mediators, with about 46% of the
generated influence graphs repeating these nodes.
We found that humans find it simpler to follow posi-
tive chains of influence, so to reduce their cognitive
load, we post-process each influence graph to only
retain the strengthening contextualizer (Figure 1),
the situation (U), the strengthening mediator (M+),
and the hypothesis (H).

In order to establish comparable gains, we
replicate the evaluation setup of Rudinger et al.
(2020) by using use the same Amazon Mechanical
Turk template and the instruction set, and the same
pool of 230 qualified annotators that Rudinger et al.
(2020) selected based on a paid qualification test,
in which the workers were asked to answer SNLI
queries of varying levels of difficulty. We paid
slightly above $15 per hour for the tasks.

For each query, in addition to answering the de-
feasible question, three judges were asked to evalu-
ate the augmented influence graphs on two aspects:

i) Is the influence graph useful? The judges
were allowed to select from the following:

(a) helpful: the graph was crucial in helping
towards answering the question

(b) relevant but not helpful: the graph had
the right topic (relevant to the question)

4Discussion on IRB exemption in Section §B.

but did not help in answering the ques-
tion.

(c) irrelevant or misleading: the graph was
irrelevant to the question or misled the
human judge to a wrong answer.

ii) Why is the influence graph useful? The
judges were given an option to highlight the
most useful aspect of the generated influence
graph. They were allowed to tag one or more
of the following aspects as the most helpful:
i) Extraneous node, ii) Mediating node, and
iii) Structure of the graph.

We summarize the key findings below.

Finding 1: influence graphs are helpful and
relevant As Table 2 shows, a large majority
of the human judges found the influence graphs
to be helpful or relevant. We calculate the
inter-annotator agreement for this question using
majority-agreement = 1

N

∑N
i=1 mai where mai in-

dicates a majority agreement for the ith sample
(i.e., at least 2 out of 3 judges agreed on the label
for the sample). The majority-agreement (ma) on
these labels was 0.83. The judges marked about
25% of the graphs as relevant but not helpful. The
graphs in such cases were on topic but not helpful
in answering the query, thereby distinguishing the
cases when the graph was crucial in reaching the
correct answer. Finally, we note that the graphs
provided as hints could have been helpful in two
ways: by helping the human annotators arrive at the
answer, or by reinforcing their mental picture that
helped them in making the right decision. Future
research in this direction is needed to study these
aspects in depth.

Helpful 47.25
Relevant but not helpful 25.09
Irrelevant or misleading 10.58
No majority agreement 17.05

Table 2: Helpfulness of the augmentations.

Finding 2: Mediators are the most helpful for
defeasible queries For every sample, we asked
the human judges to mark which parts of the graph
was the most helpful (as shown in Figure 6 in Ap-
pendix §D.1). The judges could select more than
one aspect of the graph if they found multiple use-
ful aspects. Table 3 shows the percentage of human
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judges that selected the particular graph aspect as
most helpful. We observe that 49.48% of the judges
who found the graphs useful indicated the mediator
node as the most helpful. This indicates that while
there may be other events that impact U and H,
the mediating events are the most informative in
determining the type of link between them.

Aspect % marked useful

Mediator 49.48
Extraneous 32.03
Structure 12.81
None helpful 5.68

Table 3: Most useful aspects of an influence graph.

Finding 3: Machine generated influence graphs
help humans in defeasible reasoning Table 4
shows that performance improves across all three
tasks when the defeasible query is augmented with
an influence graph. On our challenging set of 510
queries, the overall accuracy jumps nearly 20 points
from 0.50 to 0.698. Figure 3 highlights that 113
queries that were previously given the wrong an-
swers were marked correctly when augmented with
the influence graphs.

Dataset Human Human
(Rudinger et al., 2020) (ours)

SNLI 0.461 ± 0.11 0.553 ± 0.11
SOCIAL 0.628 ± 0.07 0.814 ± 0.06
ATOMIC 0.418 ± 0.06 0.657 ± 0.06

overall 0.500 ± 0.04 0.698 ± 0.04

Table 4: Human performance (accuracy) on the three
tasks with and without generated influence graphs
along with Wilson’s score intervals for α = 95%. We
tested the statistical significance of these results using
the McNemar’s test (McNemar, 1947) and found the re-
sults to be statistically highly significant (p < 1e− 6).

4 Discussion and Conclusion

Our work takes the idea of using inference graphs
for defeasible inference and scales up its usabil-
ity by automatically generating and augmenting
them to a downstream defeasible task that both hu-
mans and machines are known to find difficult. We
identify that the contextualizer and mediator nodes
are crucial to defeasible inference, and show that
our generated graphs generate these critical nodes

Figure 3: Human performance before and after the hu-
man judges were provided with the influence graph.

effectively. Humans perform significantly better
(20% absolute improvement) across diverse defea-
sible datasets and overwhelmingly attribute their
success to the mediator nodes – giving insights into
what helps and why. In this case study, we show
that machines can fill the gaps in human knowledge
when for defeasible reasoning. While we establish
that humans are helped by these graphs, a further
investigation on how (and if) the graphs reinforced
their beliefs, and what additional information in the
graphs was beneficial to their understanding is es-
sential. Furthermore, a deeper understanding of the
trade-offs (time spent in answering these questions
with and without the graphs) also forms important
future work.
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A Sample input-output sequence for
training L

We now present a sample input-output sequence
used to train out L for graph generation. The input-
output sample (seqip, seqop) is presented below.
As mentioned in Section

1. As described in section 2.1, each in-
put sequence seqip is formatted in a
special template to be fed to the lan-
guage model (Template (1)). We show
an example of the same next for a sam-
ple from our training data. Premise:
Sunlight shines on plants.
Cells with chlorophyll in
them . . . other parts of the
plant. | Situation : more
minerals are absorbed |
Less : LESS sugar and oxygen
being produced | More :
MORE sugar and oxygen being
produced

2. Each output graph is encoded in as
a DOT string. The output DOT se-
quence seqop corresponding to the input
shown above is: strict digraph
"C+ : less minerals in the
soil [OR] less root system"
-> "S : more minerals are
absorbed" [label=hurts]; "C-
:more minerals in the soil
[OR] a better root system"
-> "S : more minerals are
absorbed" [label=helps]; "S
: more minerals are absorbed"
-> "M- : less conversion
into sugars [OR] less oxygen
produced" [label=hurts]; "S
: more minerals are absorbed"
-> "M+ : more conversion into
sugars" [label=helps]; "S- :
less minerals absorbed [OR]
less root system" -> "M+ :
more conversion into sugars"
[label=hurts]; "M- : less
conversion into sugars [OR]
less oxygen produced" -> "H-
: LESS sugar and oxygen being
produced" [label=helps]; "M-
: less conversion into sugars
[OR] less oxygen produced" ->

"H+ : MORE sugar and oxygen
being produced" [label=hurts];
"M+ : more conversion into
sugars" -> "H+ : MORE sugar
and oxygen being produced"
[label=helps]; "M+ : more
conversion into sugars" -> "H-
: LESS sugar and oxygen being
produced" [label=hurts];

B IRB Exemption

Our study was not an experimentation on humans
(posed no identifiable risk to the human judges),
did not collect any identifying information, and
ensured it involved only adults. As per the IRB
guidelines, this falls under the purview of human re-
search, and we are not publishing individual work-
ers’ answers but rather the data is tallied up, much
like a “benign behavioral intervention.” This ex-
empts us from IRB (category 3 of Federal Reg-
ulations for Protection of Human Research Sub-
jects https://www.hhs.gov/ohrp/regulations-and-
policy/regulations/45-cfr-46/).

C Infrastructure and hyperparameters

To train the T5-11B model, comprising of 11 bil-
lion parameters, we used v3-8 TPUs. The average
time to train was 7 hours for about 10 epochs. We
used the same hyperparameters as provided with
the T5 checkpoint at gs://t5-data/pretrained_
models/11B. We used maximum block size of 512
tokens, and max generation length set to 512. For
decoding, we sample according to predicted dis-
tribution. We train the GPT-2 model on a Nvidia
GTX 2080 Ti, and training the model takes about
30 minutes per epoch.

We use the medium (355M) variant of GPT-
2 (Radford et al., 2019) with 24 layers, 1024 hidden
size, 16 attention heads.

D Details of our Mechanical Turk Setup

We follow the same instructions for humans as
(Rudinger et al., 2020)5, and only additionally pro-
vided instructions for the inference graph. We used
a pool of 230 annotators that were previously qual-
ified and selected to do the defeasible inference
task, thus providing a fair comparison to their setup.
Eventually 12 workers out of these 230 workers

5We are grateful to the authors of (Rudinger et al., 2020)
for sharing their mechanical turk setup template with us.

gs://t5-data/pretrained_models/11B
gs://t5-data/pretrained_models/11B


5145

Figure 4: The influence graph corresponding to dot code shown in seqop

worked on our HITs. The graph we showed to hu-
mans was a subgraph of the inference graph, where
the selected path has the relevant content from the
inference graph to avoid showing redundant op-
posite edges. These redundant edges are useful
in training a model as the model must jointly pre-
dict all the nodes, but this is redundant for humans.
Figure 5 shows this subgraph.

Figure 5: Part of the generated influence graph that is
presented in the hit.

D.1 A sample HIT
We now show a sample HIT in Figure 6. We had
two set of annotations in every HIT.

D.2 Examples that helped humans
Next, we show two examples (Figure 7, Figure 8)
where humans were previously unsuccessful on this
answer (in the original setup of (Rudinger et al.,

2020)), and were successful now having looked
at the inference graphs. The humans marked that
the mediator nodes and the contextualizer nodes
provide useful information.

E Dataset

Dataset Split # Samples Total

WIQA
train 1522

2107test 189
dev 152

ATOMIC
train 35,001

42,977test 4137
dev 3839

SOCIAL
train 88,675

92,295test 1836
dev 1784

SNLI
train 77,015

95,795test 9438
dev 9342

Table 5: Number of samples in each dataset by split.
ATOMIC, SNLI, SOCIAL are available at https://

github.com/rudinger/defeasible-nli, WIQA
is avilable at https://allenai.org/data/wiqa

https://github.com/rudinger/defeasible-nli
https://github.com/rudinger/defeasible-nli
https://allenai.org/data/wiqa
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Figure 6: A sample HIT in mechanical turk.
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Figure 7: An example where the graph helped the hu-
man in getting the correct answer, that humans were
unsuccessful on, in the past.

Figure 8: Another example where the graph helped the
human in getting the correct answer, that humans were
unsuccessful on, in the past.


