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LƴǇǳǘΥ In a way, the film feels like a breath of fresh air, but only to those that allow it in.

Figure 3: Visualization of attention scores averaged over all heads and all layers. This case is selected from the
SST-2 dev set. The red rectangle indicates higher scores on the right side but lower scores on the left side.

QNLI RTE MRPC STS
Models Acc Acc Acc PCC

BERT 91.7 68.6 87.3 89.5
+SLA 91.4 67.8 88.5 89.9

Table 2: Experimental results on sentence-pair classi-
fication datasets. All models are base-size and results
are reported on their dev sets. “PCC” is short for the
Pearson correlation coefficient.

local attention is more important in the attention
score calculation process. Besides, Table 1 and
Figure 2 illustrate that our model achieves better
performances owing to more attention on syntacti-
cally relevant words.

Attention Visualization In order to compare the
syntax-aware attention with the window-based at-
tention, we plot their attention scores in Figure 3.
As formulated in Equation (6), the attention scores
are calculated from the aggregation of global and
local attention. We mainly focus on the interactions
of tokens, except for [CLS] and [SEP]. Then the
attention scores are averaged over all heads and
layers. This visualization validates the effective-
ness of incorporating syntactic information into
self-attention. As shown in Figure 3, we can see
that there are many informative tokens overlooked
by the window-based method (left) but captured by
our method (right). For instance, the syntax-aware
attention allows the tokens “fresh air” and “allow”
to strongly attend to the token “film”, but these to-
kens are paid less attention in the window-based
attention.

Testing on Sentence-Pair Classification We at-
tempt to evaluate our model on sentence-pair clas-
sification datasets. Given a single sentence, we
can easily apply dependency parsing and restrain
the attention scopes inside the sentence. But for
pairwise classification, one problem is how to limit
the scopes between a pair of sentences. So a naive
approach is adopted, that each token in a sentence
can attend to all tokens in another sentence. We
conduct experiments on four pairwise classifica-
tion datasets from GLUE benchmark (Wang et al.,
2018), which cover paraphrase, textual entailment
and text similarity.

Experimental results are shown in Table 2. The
syntax-aware local attention achieves better perfor-
mances on MRPC and STS, but doesn’t perform
well on RTE and QNLI. We suspect that it is be-
cause the cross-sentence interactions are more im-
portant for textual entailment task.

5 Conclusion

This work verifies that BERT can be further pro-
moted by incorporating syntactic knowledge to the
local attention mechanism. With more focused
attention over the syntactically relevant words,
our model achieves better performance on various
benchmarks. Additionally, the extensive experi-
ments demonstrate the universality of our syntax-
aware local attention.
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A Appendices

A.1 Training Procedure

We extend the Transformer encoder layer and lift
weights from BERT to our model. Following De-
vlin et al. (2019), we apply the fine-tuning proce-
dure for various NLP tasks. For classification tasks,
the final output of the first token [CLS] is taken
as the representation of the input. The probability
that the input sentence X is labeled as class c is
predicted by a linear transformation with softmax:

P (c |X) = softmax(Wch[CLS] + bc) (7)

where h[CLS] is the representation of the token
[CLS], Wc and bc are task-specific parameters.
For labeling tasks, we apply the BIO annota-
tion (Ratinov and Roth, 2009) to label outputs and
compute the probability that token xi belongs to
class c as:

P (c |xi) = softmax(Wthi + bt) (8)

where hi is the representation of the token xi, Wt

and bt are task-specific parameters. Finally, the
training objective for all tasks is to minimize the
cross-entropy loss.

A.2 Implementation Details

We apply the whitespace tokenization to the input
sentence, and obtain the dependency tree using
the Spacy parser5. However, the BERT inputs are
tokenized by WordPiece tokenizer, which means
one word may be split into several sub-words. To
address this issue, for each word in the dependency
tree, the sub-words split by WordPiece tokenizer
share the same masking value in the calculation of
syntax-aware local attention.

An important detail is that BERT represents the
input by adding a [CLS] token at the beginning as
the special classification embedding and separating
sentences with a [SEP] token. Clark et al. (2019)
find that these special tokens are attached with a
substantial amount of BERT’s attention. Thus, the
[CLS] and [SEP] tokens are guaranteed to be
present and are never masked out in our local atten-
tion.

We use the uncased version of BERT for CoLA
and SST-2, and the cased version for CoNLL-2003
and FCE. During the training, we empirically se-
lect the threshold m from {3,4}. The maximum

5https://spacy.io/

sequence length is set to 128 for all tasks. We use
Adam (Kingma and Ba, 2015) as our optimizer,
and perform grid search over the sets of the learn-
ing rate as {2e-5, 3e-5} and the number of epochs
as {3,5,10} for most tasks. In particular, we use
smaller learning rates {5e-6, 1e-5, 2e-5} and train
more epochs {30, 60} on CoNLL-2003, but the
average F1 of the best 5 runs still hasn’t reached
the results reported by Devlin et al. (2019). The
batch size is fixed to 32 to reduce the search space,
and we evaluate models every 500 training steps
for all datasets. Furthermore, we experiment with
the window-based attention on BERT, which allows
each token to pay more attention to the neighboring
tokens within a window size 2k+1. We vary the k
within {3,4,5}, and also incorporate the attention
scores with global attention scores.

A.3 Testing on Chinese Benchmarks
The ChnSentiCorp dataset is used for sentiment
classification task. We treat the ChnSentiCorp as
single-sentence datasets although there are some
examples including multiple sentences. The MSRA
NER and CGED datasets are selected for named
entity recognition and grammatical error detection
in Chinese. The accuracy (Acc) is used as the met-
ric of ChnSentiCorp, the precision, recall and F1

are used as metrics of MSRA NER and CGED. In
particular, for a fair comparison with the results
of iFLYTEK’s single model (Fu et al., 2018), we
construct the CGED test set from CGED 2016 and
2017 test sets. Then we report detection-level re-
sults computed by the official evaluation tool.

Table 3 shows the main results on Chinese
datasets. All results are reported on their test set.
The proposed syntax-aware local attention outper-
forms the window-based attention and the basic
BERT on all evaluated datasets. We attain 95.7
accuracy on ChnSentiCorp and 94.9 F1 on MSRA
NER. Besides, BERT+SLA outperforms the state-
of-the-art with a large margin on CGED.

https://spacy.io/
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ChnSentiCorp MSRA NER CGED
Models Acc P R F1 P R F1

State-of-the-art Models
ERNIE 2.0 (Sun et al., 2020) 95.8 - - 95.0 - - -
BERT-MRC (Li et al., 2020) - 96.2 95.1 95.7 - - -
ePMI Matcher (Fu et al., 2018) - - - - 83.2 61.0 70.4

Base-size Models
BERT (Our reimplementation) 94.7 95.0 94.6 94.8 79.9 75.2 77.5

+ WLA 95.1 95.1 94.2 94.6 79.9 73.5 76.6
+ SLA 95.7 94.9 95.0 94.9 81.0 76.6 78.7

Table 3: Experimental results on Chinese single-sentence benchmarks. We only show the results of base-size
models because Google has not released the large-size model. Reported results are averaged over 5 runs.


