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Abstract

Keyphrase Prediction (KP) task aims at pre-
dicting several keyphrases that can summarize
the main idea of the given document. Main-
stream KP methods can be categorized into
purely generative approaches and integrated
models with extraction and generation. How-
ever, these methods either ignore the diver-
sity among keyphrases or only weakly cap-
ture the relation across tasks implicitly. In
this paper, we propose UniKeyphrase, a novel
end-to-end learning framework that jointly
learns to extract and generate keyphrases. In
UniKeyphrase, stacked relation layer and bag-
of-words constraint are proposed to fully ex-
ploit the latent semantic relation between ex-
traction and generation in the view of model
structure and training process, respectively.
Experiments on KP benchmarks demonstrate
that our joint approach outperforms main-
stream methods by a large margin.

1 Introduction

Keyphrases are several phrases that highlight core
topics or information of a document. Given a doc-
ument, the KP task focuses on automatically ob-
taining a set of keyphrases. As a basic NLP task,
keyphrase prediction is useful for numerous down-
stream NLP tasks such as summarization (Wang
and Cardie, 2013; Pasunuru and Bansal, 2018), doc-
ument clustering (Hulth and Megyesi, 2006), infor-
mation retrieval (Kim et al., 2013).

Keyphrases of a document fall into two cate-
gories: present keyphrase that appears continuously
in the document, and absent keyphrase which does
not exist in the document. Figure 1 shows an exam-
ple of a document and its keyphrases. Traditional
KP methods are mainly extractive, which have
been extensively researched in past decades (Wit-
ten et al., 2005; Nguyen and Kan, 2007; Medelyan

∗ Equal contribution.

Document: On selecting an optimal wavelet for detecting singularities in 
traffic and vehicular data. …… applications of wavelet transform s ( wts ) 
in traffic engineering have been introduced however , …… , second order 
difference , oblique cumulative curve , and short time fourier transform ) . 
it then mathematically describes wts ability to detect singularities in traffic 
data . …… , it is shown that selecting a suitable wavelet largely depends 
on the specific research topic , and that the mexican hat wavelet generally 
gives a satisfactory performance in detecting singularities in traffic and 
vehicular data .

Present keyphrases: { wavelet transform, oblique cumulative curve, 
short time fourier, the mexican hat wavelet } 

Absent keyphrases: { singularity detection, traffic data analysis } 

Figure 1: An example of an input document and its
expected keyphrases. Blue and red denote present and
absent keyphrases, respectively.

et al., 2009; Lopez and Romary, 2010; Zhang et al.,
2016; Alzaidy et al., 2019; Sun et al., 2020). These
methods aim to select text spans or phrases directly
in the document, which show promising results
on present keyphrase prediction. However, extrac-
tive methods cannot handle the absent keyphrase,
which is also significant and requires a comprehen-
sive understanding of document.

To mitigate this issue, several generative meth-
ods (Meng et al., 2017; Chen et al., 2018; Ye and
Wang, 2018; Wang et al., 2019; Chen et al., 2019b;
Chan et al., 2019; Zhao and Zhang, 2019; Chen
et al., 2020; Yuan et al., 2020) have been proposed.
Generative methods mainly adopt the sequence-
to-sequence (seq2seq) model with a copy mecha-
nism to predict a target sequence, which is concate-
nated of present and absent keyphrases. Therefore,
the generative approach can predict both kinds of
keyphrases. But these methods treat present and
absent keyphrases equally, while these two kinds
of keyphrase actually have different semantic prop-
erties. As illustrated in Figure 1, all the present
keyphrases are specific techniques, while the ab-
sent keyphrases are tasks or research areas.

Thus several integrated methods (Chen et al.,
2019a; Ahmad et al., 2020) try to perform multi-



826

task learning on present keyphrase extraction
(PKE) and absent keyphrase generation (AKG).
By treating present and absent keyphrase predic-
tion as different tasks, integrated methods clearly
distinguish the semantic properties for these two
kinds of keyphrases. But integrated models suffer
from two limitations. Firstly, these approaches are
not trained in an end-to-end fashion, which causes
error accumulation in the pipeline. Secondly, inte-
grated methods just adopt a bottom shared encoder
to implicitly capture the latent semantic relation
between PKE and AKG, while this relation is es-
sential for the KP task. As illustrated in Figure 1,
the ground truth of PKE are specific techniques,
which are all used for the “singularity detection”
task in the “traffic data analysis” area. Such se-
mantic relation between PKE and AKG can bring
benefits for KP. Actually, semantic relations like
“technique-task-area” between two tasks are com-
mon in the KP task. However, these integrated
methods are weak at modeling it.

To address these issues, we propose a novel end-
to-end joint model, UniKeyphrase, which adopts a
unified pretrained language model as the backbone
and is fine-tuned with both PKE and AKG tasks.
What’s more, UniKeyphrase explicitly captures the
mutual relation between these two tasks, which
brings benefits for keyphrase prediction: present
keyphrases can provide an overall sense about
salient parts of the document for AKG, and ab-
sent keyphrases viewed as high-level latent topics
of the document can also supply PKE with global
semantic information.

Specifically, UniKeyphrase employs two mecha-
nisms to capture the relation from model structure
and training process, respectively. Firstly, stacked
relation layer is applied to repeatedly fuse PKE
and AKG task representations to explicitly model
the relation between the two sub-tasks. In detail,
we adopt a co-attention based relation network to
model the co-influence. Secondly, a bag-of-words
constraint is designed for UniKeyphrase, which
aims to provide some auxiliary global information
of the whole keyphrases set during training.

Experiments conducted on the widely used pub-
lic datasets show that our method significantly out-
performs mainstream generative and integrative
models. The contributions of this paper can be
summarized as follows:

• We introduce a novel end-to-end framework
UniKeyphrase for unified PKE and AKG.

• We design stacked relation layer (SRL) to ex-
plicitly capture the relation between PKE and
AKG.

• We propose bag-of-words constraint (BWC)
to explicitly feed global information about
present and absent keyphrases to the model.

2 Related Works

2.1 Keyphrase Extraction

Most existing extraction approaches can be cate-
gorized into two-step extraction methods and se-
quence labeling approaches. Two-step extraction
methods first identify a set of candidate phrases
from the document by heuristics, such as essen-
tial n-grams or noun phrase (Hulth, 2003). Then,
the candidate keyphrases are sorted and ranked to
get predicted results. The scores can be learned
by either supervised algorithms (Nguyen and Kan,
2007; Medelyan et al., 2009; Lopez and Romary,
2010) or unsupervised graph ranking methods (Mi-
halcea and Tarau, 2004; Wan and Xiao, 2008). For
sequence labeling approaches, documents are fed
to an encoder then the model learns to predict the
likelihood of each word being a keyphrase (Zhang
et al., 2016; Alzaidy et al., 2019; Sun et al., 2020).

2.2 Keyphrase Generation

Keyphrase generation focuses on predicting both
present and absent keyphrases. Meng et al. (2017)
first propose CopyRNN which is a seq2seq frame-
work with attention and copy mechanism. Then
a semi-supervised method for the exploitation of
the unlabeled data is investigated by Ye and Wang
(2018). Chen et al. (2018) employ a review mech-
anism to reduce duplicates. Chen et al. (2019b)
focus on leveraging the title information to im-
prove keyphrases generation. The latent topics of
the document are exploited to enrich features by
Wang et al. (2019). Zhao and Zhang (2019) uti-
lize linguistic constraints to prevent model from
generating overlapped phrases. Chan et al. (2019)
introduce a reinforcement learning approach for
keyphrase generation. Chen et al. (2020) propose
an exclusive hierarchical decoding framework to
explicitly model the hierarchical compositionality
of a keyphrase set. Yuan et al. (2020) introduce
a new model to generate multiple keyphrases as
delimiter-separated sequences.
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2.3 Integrated Methods

To explicitly distinguish the present and absent
keyphrases, integrated extraction and generation
approach have been applied to the KP task. Chen
et al. (2019a) aim at improving the performance of
the generative model by using an extractive model.
Ahmad et al. (2020) propose SEG-Net, a neural
keyphrase generation model that is composed of a
selector for selecting the salient sentences in a doc-
ument, and an extractor-generator that extracts and
generates keyphrases from the selected sentences.
In contrast to these methods, our joint approach can
explicitly capture the relation between extraction
and generation in an end-to-end framework.

3 Approach

In this section, we describe the architecture of
UniKeyphrase. Figure 2 gives an overview of
UniKeyphrase, which consists of three components:
extractor-generator backbone based on UNILM, a
stacked relation layer for capturing the relation be-
tween PKE and AKG, and bag-of-words constraint
for considering the global view of two tasks in
training. In the following sections, the details of
UniKeyphrase are given.

3.1 Extractor-Generator Backbone

Given a document X = {x1, ..., xm}, KP aims at
obtaining a keyphrase set K = {k1, ..., k|K|}. Nat-
urally, K can be divided into present keyphrase
set Kp = {kp1, ..., k

p
|Kp|} and absent keyphrase

set Ka = {ka1 , , ..., ka|Ka|} by judging whether
keyphrases appear exactly in the source document.
UniKeyphrase decomposes the KP into PKE and
AKG, and jointly learns two tasks in an end-to-end
framework.

UniKeyphrase treats PKE as a sequence labeling
task and AKG as a text generation task. To jointly
learn in an end-to-end framework, UniKeyphrase
adopts UNILM (Dong et al., 2019) as the backbone
network. UNILM is a pre-trained language model,
which can perform sequence-to-sequence predic-
tion by employing a shared transformer network
and utilizing specific self-attention masks to control
what context the prediction conditions on.

As shown in Figure 2, with a pre-trained UNILM
layer, the contextualized representation for the
source document can attend to each other from both
directions, which is convenient for PKE. While the
representation of the target token can only attend
to the left context, as well as all the tokens in the

source document, which can be easily adapted to
AKG.

Specifically, for a document X, all absent
keyphrases will be concatenated as a sequence.
Then we randomly choose tokens in this sequence,
and replace them with the special token [MASK].
The masked sequence is defined as Km

a . We further
concatenate document X and Km

a with [CLS] and
[SEP] tokens as the input sequence:

I = {[CLS]X [SEP]Km
a [SEP]} (1)

Afterwards, we feed input sequence into UNILM
and obtain output hidden state H:

H = UNILM(I) (2)

the hidden state H = {h1, ...,hT } (T is the number
of input tokens in the UNILM) will be used as the
input of stacked relation layer for jointly modeling
PKE and AKG.

3.2 Stacked Relation Layer
Based on the UNILM, we can obtain the output hid-
den H. Instead of directly using the UNILM hidden
for PKE and AKG, we use the SRL to explicitly
model the relation between these two tasks. Ac-
tually, modeling the cross-impact and interaction
between different tasks in joint model is a common
problem (Qin et al., 2020a,b, 2019).

Specifically, SRL takes the initial shared repre-
sentations P0 = A0 = {h1, ...,hT } as input and aims
to obtain the finally task representations PL and AL

(L is the number of stacked layers), which consider
the cross-impact between PKE and AKG. Besides,
SRL can be stacked to repeatedly fuse PKE and
AKG task representations for better capturing mu-
tual relation.

Formally, given the lth layer inputs Pl = {pl1,
...,plT } and Al = {al1, ...,alT }, stacked relation layer
first apply two linear transformations with a ReLU
activation over the input to make them more task-
specific, which can be written as follow:

Pl
′
= LN(Pl +max(0,Wl

PPl + bl
P )) (3)

Al
′
= LN(Al +max(0,Wl

AAl + bl
A)) (4)

where LN represent the layer normalization func-
tion (Ba et al., 2016).

Then the relation between the two tasks will be
integrated base on task-specific representations. In
this paper, we adopt co-attention relation networks.
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Figure 2: The architecture of our model

Co-Attention is an effective approach to model the
important information of correlated tasks. We ex-
tend the basic co-attention mechanism from token
level to task representations level. It can produce
the PKE and AKG task representations considering
each other. Therefore, we can transfer useful mu-
tual information between two tasks. The process
can be formulated as follows:

Pl+1 = LN(Pl
′

+ softmax(Pl
′
(Al

′
)>)Al

′
) (5)

Al+1 = LN(Al
′

+ softmax(Al
′
(Pl
′
)>)Pl

′
) (6)

where Pl+1 = {pl+1
1 , ...,pl+1

T } and Al+1 = {al+1
1 ,

...,al+1
T } are the lth layer updated representations.

After stacked relation layer, we can obtain the
outputs PL = {pL1 , ...,pLm} and AL = {aL1 , ...,aLn}.
We then adopt separate decoders to perform PKE
and AKG by using the task representations of cor-
responding position , which can be denoted as fol-
lows:

ypi = softmax(WppLi + bp) (7)

yaj = softmax(WaaLj + ba) (8)

where ypi and yaj are the predicted distribution for
present keyphrase and absent keyphrase respec-

tively; Wp and Wa are transformation matrices; bp

and ba are bias vectors.

3.3 Bag-of-Words Constraint

UniKeyphrase divides the KP task into two sub-
tasks, PKE and AKG. These two sub-tasks are op-
timized separately, which lacks the awareness of
global information about the total keyphrase set.
Such global information can be the amount of all
keyphrases or the common words between present
and absent keyphrases. Bag of words (BoW) is
a suitable medium for describing this informa-
tion. In this paper, we feed global information
to UniKeyphrase by constructing constraints based
on the BoW of keyphrases. The word count in
BoW can provide guidance about task relation for
PKE and AKG training in a global view.

Specifically, we calculate the gap between the
model predicted keyphrase BoW and ground truth
keyphrase BoW, then add it into the loss. Hence
UniKeyphrase can get a global view of keyphrases
allocation and adjust two tasks during training.

We first collect present and absent keyphrase
BoW from model. For present keyphrases, since
PKE is a sequence labeling task, we collect all
words that labeled as keyphrases, and construct
present predicted BoW V p. We use the sum of
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corresponding label probabilities as the count of
word w in V p:

V p(w) =
∑
i∈Iw

max(ypi ) (9)

where ypi denotes all predicted label probabilities
at time step i. Iw is all position of word w in
document. Maximum operation is used for select-
ing the probability of predicted label. For absent
keyphrase, the generation probability of all steps
are accumulated as predicted absent BoW V a(w).

V a(w) =
N∑
j=1

yaj (w) (10)

After acquiring the predicted present and absent
keyphrase BoW, we concatenate these two parts as
the total predicted BoW V , then calculate the error
compared with ground truth BoW V̂ . To reserve
the word count information, we use Mean Square
Error (MSE) function:

LBoW =
1

|V|
∑
w∈V

(V (w)− V̂ (w))2 (11)

It is worth noting that V is the collection of words
that make up the ground truth keyphrases and pre-
dicted keyphrases. So the BWC only affects a
small subset of the whole vocabulary for each sam-
ple. This can help reduce the noise and stabilize
the training process.

In practice we increase the weight of BWC loga-
rithmically from zero to a defined maximum value
wm, the weight of BWC on t step can be denoted
as follows:

wBoW (t) = log(
ewm − 1

ttotal
t+ 1) (12)

where ttotal is the total step of training. The reason
to adjust the weight is the same as Ma et al. (2018).
The BWC should take effect when predicted results
are good enough. Therefore we first assign a small
weight to BWC at the initial time, and gradually
increase it when training.

3.4 Training

For the PKE task, objection is formulated as:

LPKE = −
M∑
i=1

C∑
c=1

wcŷ
(c,p)
i log

(
y
(c,p)
i

)
(13)

where M refers to the length of document, C refers
to the number of label, wc is the loss weight for the
positive label. ŷp

i refers the gold label.
For the AKG task, training objection is to max-

imize the likelihood of masked tokens, which is
formulated as:

LAKG = −
N∑
i=1

Vs∑
j=1

ŷ
(j,a)
i log

(
y
(j,a)
i

)
(14)

where N refers to the number of masked tokens,
Vs refers to the size of vocabulary. ŷa

i refers the
ground-truth word.

Considering the BWC, the overall loss of
UniKeyphrase is formulated as:

L = LPKE + LAKG + wBoWLBoW (15)

4 Experiments

4.1 Datasets and Evaluation
We follow the widely used setup of the deep KP
task: train, validation and test on the KP20K (Meng
et al., 2017) dataset, and give evaluation on
three more benchmark datasets: NUS (Nguyen
and Kan, 2007), INSPEC (Hulth, 2003) and
SEMEVAL (Kim et al., 2010). We follow the pre-
process, post-process, and evaluation setting of
Meng et al. (2017, 2019); Yuan et al. (2020)1.
Specifically, we use the partition of present and ab-
sent provided by Meng et al. (2017) and calculate
F1@5 and F1@M (use all predicted keyphrases
for F1 calculation) after stemming and removing
duplicates.

4.2 Experimental Setup
Setting: We reuse most hyper-parameters from pre-
trained UNILM2. The layer number of SRL is set
to 2. We use wm = 1.0 when adjusting the weight
of BWC. PKE loss weights wc for the positive
label is set to 5.0. we set batch size to 256, and
maximum length to 384. During decoding, we
use beam search for AKG, and beam size is set
as 5. We train our model on the training set for
100 epochs. It takes about 40 minutes per epoch to
train UniKeyphrase on 8 Nvidia Tesla V100 GPU
cards with mixed-precision training. More details
are provided in Appendix B.

1we follow the official GitHub repository to prepare
datasets and evaluation scripts which are available on
https://github.com/memray/OpenNMT-kpg-release.

2we use the official provided pre-trained model, which is
available on https://unilm.blob.core.windows.net/ckpt/unilm1-
base-cased.bin.
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Type Model
KP20k NUS SemEval Inspec

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

Generative

CatSeq 29.1 36.7 32.3 39.7 24.2 28.3 22.5 26.2
CatSeqTG 29.2 36.6 32.5 39.3 24.6 29.0 22.9 27.0

CatSeq(TRM) 29.1 36.8 32.8 40.5 24.5 28.8 22.5 26.4
CatSeqD 28.5 36.3 32.1 39.4 23.3 27.4 21.9 26.3

ExHiRD-h 31.1 37.4 – – 28.4 33.5 25.3 29.1

Integrated
KG-KE-KR-M 31.7 – 28.9 – 20.2 – 25.7 –

SEG-NET 32.3 38.1 40.1 45.9 29.8 34.1 24.6 30.1
Joint UniKeyphrase 40.8 42.8 43.4 43.5 41.6 40.9 29.0 31.1

Table 1: Results on present keyphrase prediction.

Baselines: We compare two kinds of strong
baselines (generative, integrated) to give a com-
prehensive evaluation on the performance of
UniKeyphrase.

• Generative: Generative models can predict
both present and absent keyphrases under the
seq2seq framework. CatSeq (Yuan et al.,
2020) is the classic setting of keyphrase
seq2seq model. We report the performance
of CatSeq and various improved models on
it, including CatSeqTG (Chen et al., 2019b),
CatSeq (TRM) (Ahmad et al., 2020) and Cat-
SeqD (Yuan et al., 2020). A recently released
model is also included for comparing, which
is ExHiRD-h (Chen et al., 2020).

• Integrated: Integrated model often combine
multiple modules to perform extractive and
abstractive tasks. But they are not end-to-end.
Two latest integrated models are recorded for
comparison. including KG-KE-KR-M (Chen
et al., 2019a) and SEG-NET (Ahmad et al.,
2020)

4.3 Main Results
In this section, we show the experimental results
of the baseline methods and our model on present
keyphrase extraction and absent keyphrase gener-
ation. Besides, we also study the average number
of unique predicted keyphrases per document to
further show the advantages of our model.

4.3.1 Present and Absent Keyphrase
Prediction

The present and absent keyphrase prediction per-
formance of all methods are shown in Table 1
and Table 2. From the results, we can find that
our joint framework outperforms most state-of-
the-art generative baseline by a significant mar-
gin, which demonstrates the effectiveness of our
UniKeyphrase. We notice that the UniKeyphrase

does not outperform the SEG-NET on F1@M for
present keyphrase extraction on NUS dataset. One
potential reason is that the source document length
and sentence number of NUS are much larger than
the KP20k training set. SEG-NET employs an ad-
ditional sentence selector for filtering sentences
without keyphrase, which is more adaptable for
processing long documents like NUS.

4.3.2 Number of Predicted Keyphrases
The number of predicted keyphrases indicates the
model’s understanding of input documents. From
the previous work (Chen et al., 2020), we find the
average number of unique predicted keyphrases
per document is much lower than the gold average
keyphrase number in most datasets. The number of
unique keyphrases predicted by UniKeyphrase and
baselines is compared in Table 3. We can find that
UniKeyphrase predicts more (especially in absent
keyphrases) than baseline methods, which is closer
to ground truth. Meanwhile, we find UniKeyphrase
leads to predict more keyphrases than the ground-
truth (especially on KP20k). We leave solving the
over prediction keyphrases problem as our future
work.

4.4 Ablation Study

In this section, we check the improvement brought
by SRL and BWC. Several ablation experiments
are conducted to analyze the effect of different com-
ponents. The ablation experiment on SemEval is
shown in Table 4. The results show the effective-
ness of different components of our method to the
final performance.

Effectiveness of stacked relation layer: In this
setting, we conduct experiments on the multi-task
framework where PKE and AKG promote each
other only by the hidden state of UNILM, From

3Reports from Yuan et al. (2020), which do not report
absent metrics for this model. The original paper also does
not give detailed numbers.
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Type Model
KP20k NUS SemEval Inspec

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

Generative

CatSeq 1.5 3.2 1.6 2.8 2.0 2.8 0.4 0.8
CatSeqTG 1.5 3.2 1.1 1.8 1.9 2.7 0.5 1.1

CatSeq(TRM) 1.5 3.1 1.1 1.8 1.9 2.7 0.5 0.9
CatSeqD 1.5 3.1 1.5 2.4 1.6 2.4 0.6 1.1

ExHiRD-h 1.6 3.2 – – 1.7 2.5 1.1 2.2

Integrated
KG-KE-KR-M3 – – – – – – – –

SEG-NET 2.0 3.8 1.4 2.4 2.1 3.1 0.9 1.4
Joint UniKeyphrase 4.7 4.7 3.6 3.7 3.0 3.2 2.9 2.9

Table 2: Results on absent keyphrase prediction.

Model Inspec SemEval KP20k
#PK #AK #PK #AK #PK #AK

Ground Truth 7.64 2.10 6.28 8.12 3.32 1.93
Transformer 3.17 0.70 3.24 0.67 3.44 0.58
catSeq 3.33 0.58 3.45 0.64 3.70 0.51
catSeqD 3.33 0.58 3.47 0.63 3.74 0.50
catSeqCorr 3.07 0.53 3.15 0.62 3.36 0.50
ExHiRD-h 4.00 1.50 3.65 0.99 3.97 0.81
SEG-NET - - - - 3.79 1.14
UniKeyphrase 5.19 2.74 8.15 3.04 6.29 2.72

Table 3: Results of average numbers of predicted
unique keyphrases. “#PK” and “#AK” are the number
of present and absent keyphrases respectively. Bold de-
notes the prediction closest to the ground truth.

Model
Present Absent

F1@5 F1@M F1@5 F1@M
UniKeyphrase 41.6 40.9 3.0 3.2
w/o SRL 38.5 37.6 2.9 3.1
w/o BWC 40.0 39.5 2.8 2.8

Table 4: Ablation study on SemEval dataset

the result, we can see that the performance drops
both in present keyphrase and absent keyphrase
without stacked relation layer. This demonstrates
that explicitly modeling the relation between PKE
and AKG with stacked relation layer can benefit
them effectively.

Effectiveness of bag-of-words constraint: In
this setting, we remove our bag-of-words constraint
and there is no global constraint for two tasks. The
results show a drop in KP performance, indicating
that capturing the global constraint of the result by
BWC is effective and important for our method.

4.5 Analysis

4.5.1 SRL Analysis
To better understand the SRL module, we analyze
the impact of stacked layers and give a visualization
of the inner state of SRL.

Analysis of SRL Layer Number: We explore

Model Total F1@M
UNILM based keyphrase generation 23.7
UniKeyphrase with 0 layer SRL 23.1
UniKeyphrase with 1 layer SRL 25.2
UniKeyphrase with 2 layer SRL 25.3
UniKeyphrase with 3 layer SRL 24.5

Table 5: Total keyphrase prediction on SemEval dataset
by different setting. UniKeyphrase with 0 layer SRL
means UniKeyphrase without SRL module.

the impact of the stack number of relation network.
The comparison of total keyphrase prediction re-
sult, which regardless of the present or absent of
keyphrases, are shown in Table 5. We can find that
setting deeper layers could generally result in better
performance when the number of stacked layers
is less than three, which proves the effectiveness
of stacked layers. It is worth noting that when the
number of stacked layers is larger than two, the KP
performance drops. We suppose that when the rela-
tion network becomes deeper, the over-interaction
will lose the diversity of two task representations.

Visualization Analysis for SRL: To better un-
derstand what the SRL network has learned, we
compare the distance between the PKE representa-
tion and AKG representation in different settings.
In detail, we randomly sample 2000 pairs of PKE
representation vector and AKG representation vec-
tor on different positions from test data and com-
pute euclidean metric in each pair. As shown in
Figure 3, the blue points mean the Euclidean met-
ric between PKE and AKG representation vector
without SRL layer, while the yellow points mean
the Euclidean metric with SRL layer.

From the Figure 3, we can find that the blue
points are under the yellow points, which means
the PKE and AKG representation vector without
SRL is more similar. In other words, SRL has
learned the task-specific representation. Also, the
blue points are denser than the yellow points, which
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Figure 4: BWC’s influence on total training loss (se-
quence labeling + text generation).

means the PKE and AKG representation with SRL
is more diverse than the one without SRL on differ-
ent samples.

4.5.2 BWC Analysis
Loss Compare: From Figure 4 we can see that the
original total loss (labeling and generation) drops
more with the help of BWC compared to the vanilla
model. BWC actually is an enhancement on the
original supervised signal from a global view. It
guides the model to learn how many to predict
and how to allocate present and absent keyphrases,
while original loss only teaches what to predict in
each position.

Bag-of-words Error: We also calculate the bag-
of-words Error between ground truth and model
predicted keyphrases, which is how many tokens
are incorrectly predicted. As shown in Figure 5,
UniKeyphrase with BWC achieves lower BoW Er-
ror compared with the vanilla model. It proves
that BWC successfully guides the model to learn a
better BoW allocation.

4.5.3 Joint Framework Analysis
In our UniKeyphrase model, we adopt pre-trained
model UNILM for KP. So it is necessary to check

KP20k Inspec NUS SemEval
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 Vanilla UniKeyphrase
+BWC

Figure 5: Bag-of-words Error comparison between
vanilla and BWC.

that the gain on metrics of our proposed joint frame-
work is not just come from the pre-trained model.
In this section, we compare UniKeyphrase with
directly using the pre-trained UNILM to perform
generative KP.

Specifically, we train a sequence to sequence
model for KP based on UNILM. Results are shown
in Table 5. From the results, we find that all of
the joint models with SRL can further outperform
the generative method based on UNILM, demon-
strating that the improvement of KP mainly come
from our joint framework instead of pre-trained
UNILM. We notice that the UniKeyphrase without
SRL does not outperform the generative method
based on UNILM, which show the significance of
modeling the relation between the two sub-tasks in
our joint framework.

5 Conclusion and Future Work

This paper focuses on explicitly establishing an end-
to-end unified model for PKE and AKG. Specifi-
cally, we propose UniKeyphrase, which contains
stacked relation layer to model the interaction and
relation between the two sub-tasks. In addition,
we design a novel bag-of-words constraint for
jointly training these two tasks. Experiments on
benchmarks show the effectiveness of the proposed
model, and more extensive analysis further con-
firms the correlation between two tasks and reveals
that modeling the relation explicitly can boost their
performance.

Our UniKeyphrase can be formalized as a uni-
fied framework of NLU and NLG tasks. It is easy
to transfer it to other extraction-generation NLP
tasks. In the future, we will explore to adopt our
framework to more scenarios.
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A Dataset Statistics

Type Dataset #Examples Max/Avg #Tokens Max/Avg #Sentences

Test

Inspec 500 387.0 / 138.4 27.0 / 6.7
NUS 211 384.0 / 185.6 16.0 / 8.4
SemEval 100 415.0 / 208.0 18 / 8.8
KP20k 20000 1116.0 / 178.9 70.0 / 8.1

Validation KP20k 20000 1862.0 / 179.2 120 / 8.2
Train KP20k 514154 2924 / 177.9 284 / 8.2

Table 6: Summary of the dataset used in experiments.
“#Examples” means the number of sample. “#Tokens”
means the number of token. “#Sentences” means the
number of sentence.

Relevant statistics about the dataset used in this
paper is shown in Table 6.

B Experimental Details

The BWC does not bring extra parameters, hence
the trainable parameters of UniKeyphrase come
from UNILM and SRL. We use the base version
of UNILM, which contains about 110M parame-
ters. Follow UNILM, our model is implemented
using PyTorch. The learning rate is 1e-5 and the
proportion of warmup steps is 0.1. The masking
probability of absent keyphrase sequence is 0.7.
For the SRL module, dropout is applied to the out-
put of each layer for regularization, the dropout
rate is 0.5. In this paper, we try to set the num-
ber of layer by 2,3,4 and choose the best based on
validation. For all experiments in this paper, we
choose the model that performs best on the KP20k
validation dataset.

C Preprocess

The input of UniKeyphrase is the same as BERT,
which applies wordpiece tokenizer on raw sen-
tences. So we use the “BIXO” labeling method,
where B and I stand for Beginning and Inside of
a word in keyphrases, and O denotes any token
that Outside of any keyphrase. For any sub-word
token in keyphrases(which starts with ‘##’ in pro-
cessed input) we use X to label it. For example,
“voip conferencing system” will be tokenized into
“v ##oi ##p con ##fer ##encing system” and be
labeled as “B X X I X X I”. We concatenate all the
tokenized absent keyphrases into one sequence us-
ing a special delimiter “ ; ”. An example of absent
keyphrase sequence will like “peer to peer ; content
delivery ; t ##f ##rc ; ran ##su ##b”.

Document: improving reliability of a shared supplier with
competition and spillover s . study spillover effect on
competing manufacturers incentives to improve a
suppliers reliability . develop a two stage model with
supplier improvement , random supply and demand , and
competition . characterize manufacturers equilibrium
inventory decision . characterize sufficient conditions of
existence of equilibrium of manufacturers improvement
efforts . explore impact of market characteristics on
manufacturers improvement efforts .

Present Ground Truth: {spillover, reliability, supplier
improvement}

UNILM(Generative): 1. spillover 2. competition
3. supplier improvement

UniKeyphrase: 1. supplier improvement 2. inventory
3. random supply and demand 4. competition
5. reliability 6. spillover 7. equilibrium 8. suppliers

Absent Ground Truth: {supply chain management，
game theory}

UNILM(Generative):1. supply chain management

UniKeyphrase: 1. supply chain reliability 2. supply chain
management 3. game theory

Figure 6: Case study.

D Case Study

We give a case on the KP20k testset in Figure 6.
For fairness, we compare with keyphrase genera-
tion based on UNILM since our joint models are
based on its implementation. Blue and red denote
correct present and absent keyphrases, respectively.
As shown in Figure 6, UniKeyphrase successfully
catches the deep semantic relation similar to the
case in the introduction, but here are “methods” for
the absent and “application” for the present. Hav-
ing caught this relation, UniKeyphrase gives more
accurate results(predicts absent keyphrases “game
theory”).

E Evaluation Details

We use F1@5 and F1@M as evaluation metric. For
calculating F1@5, since there is no explicit rank
score for each predicted keyphrase, we calculate
the rank score as follows:

Present: we calculate the average predicted la-
bel probabilities of all tokens in a keyphrase as
the score. We tried several other scoring strategies
like max, min, or the first token’s probability as
the score. The results show no significant differ-
ence(less than 0.1%).

Absent: following previous works, we pick up
the top 5 keyphrases in sequence order. The 5
leftmost keyphrases in the predicted sequence are
selected as the result.


