@inproceedings{li-etal-2021-twt-table,
title = "{TWT}: Table with Written Text for Controlled Data-to-Text Generation",
author = "Li, Tongliang and
Fang, Lei and
Lou, Jian-Guang and
Li, Zhoujun",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.107",
doi = "10.18653/v1/2021.findings-emnlp.107",
pages = "1244--1254",
abstract = "Large pre-trained neural models have recently shown remarkable progress in text generation. In this paper, we propose to generate text conditioned on the structured data (table) and a prefix (the written text) by leveraging the pre-trained models. We present a new data-to-text dataset, Table with Written Text (TWT), by repurposing two existing datasets: ToTTo and TabFact. TWT contains both factual and logical statements that are faithful to the structured data, aiming to serve as a useful benchmark for controlled text generation. Compared with existing data-to-text task settings, TWT is more intuitive, the prefix (usually provided by the user) controls the topic of the generated text. Existing methods usually output hallucinated text that is not faithful on TWT. Therefore, we design a novel approach with table-aware attention visibility and copy mechanism over the table. Experimental results show that our approach outperforms state-of-the-art methods under both automatic and human evaluation metrics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2021-twt-table">
<titleInfo>
<title>TWT: Table with Written Text for Controlled Data-to-Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tongliang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian-Guang</namePart>
<namePart type="family">Lou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhoujun</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large pre-trained neural models have recently shown remarkable progress in text generation. In this paper, we propose to generate text conditioned on the structured data (table) and a prefix (the written text) by leveraging the pre-trained models. We present a new data-to-text dataset, Table with Written Text (TWT), by repurposing two existing datasets: ToTTo and TabFact. TWT contains both factual and logical statements that are faithful to the structured data, aiming to serve as a useful benchmark for controlled text generation. Compared with existing data-to-text task settings, TWT is more intuitive, the prefix (usually provided by the user) controls the topic of the generated text. Existing methods usually output hallucinated text that is not faithful on TWT. Therefore, we design a novel approach with table-aware attention visibility and copy mechanism over the table. Experimental results show that our approach outperforms state-of-the-art methods under both automatic and human evaluation metrics.</abstract>
<identifier type="citekey">li-etal-2021-twt-table</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.107</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.107</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>1244</start>
<end>1254</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TWT: Table with Written Text for Controlled Data-to-Text Generation
%A Li, Tongliang
%A Fang, Lei
%A Lou, Jian-Guang
%A Li, Zhoujun
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F li-etal-2021-twt-table
%X Large pre-trained neural models have recently shown remarkable progress in text generation. In this paper, we propose to generate text conditioned on the structured data (table) and a prefix (the written text) by leveraging the pre-trained models. We present a new data-to-text dataset, Table with Written Text (TWT), by repurposing two existing datasets: ToTTo and TabFact. TWT contains both factual and logical statements that are faithful to the structured data, aiming to serve as a useful benchmark for controlled text generation. Compared with existing data-to-text task settings, TWT is more intuitive, the prefix (usually provided by the user) controls the topic of the generated text. Existing methods usually output hallucinated text that is not faithful on TWT. Therefore, we design a novel approach with table-aware attention visibility and copy mechanism over the table. Experimental results show that our approach outperforms state-of-the-art methods under both automatic and human evaluation metrics.
%R 10.18653/v1/2021.findings-emnlp.107
%U https://aclanthology.org/2021.findings-emnlp.107
%U https://doi.org/10.18653/v1/2021.findings-emnlp.107
%P 1244-1254
Markdown (Informal)
[TWT: Table with Written Text for Controlled Data-to-Text Generation](https://aclanthology.org/2021.findings-emnlp.107) (Li et al., Findings 2021)
ACL