@inproceedings{manotumruksa-etal-2021-improving-dialogue,
title = "Improving Dialogue State Tracking with Turn-based Loss Function and Sequential Data Augmentation",
author = "Manotumruksa, Jarana and
Dalton, Jeff and
Meij, Edgar and
Yilmaz, Emine",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.144",
doi = "10.18653/v1/2021.findings-emnlp.144",
pages = "1674--1683",
abstract = "While state-of-the-art Dialogue State Tracking (DST) models show promising results, all of them rely on a traditional cross-entropy loss function during the training process, which may not be optimal for improving the joint goal accuracy. Although several approaches recently propose augmenting the training set by copying user utterances and replacing the real slot values with other possible or even similar values, they are not effective at improving the performance of existing DST models. To address these challenges, we propose a Turn-based Loss Function (TLF) that penalises the model if it inaccurately predicts a slot value at the early turns more so than in later turns in order to improve joint goal accuracy. We also propose a simple but effective Sequential Data Augmentation (SDA) algorithm to generate more complex user utterances and system responses to effectively train existing DST models. Experimental results on two standard DST benchmark collections demonstrate that our proposed TLF and SDA techniques significantly improve the effectiveness of the state-of-the-art DST model by approximately 7-8{\%} relative reduction in error and achieves a new state-of-the-art joint goal accuracy with 59.50 and 54.90 on MultiWOZ2.1 and MultiWOZ2.2, respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="manotumruksa-etal-2021-improving-dialogue">
<titleInfo>
<title>Improving Dialogue State Tracking with Turn-based Loss Function and Sequential Data Augmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jarana</namePart>
<namePart type="family">Manotumruksa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeff</namePart>
<namePart type="family">Dalton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edgar</namePart>
<namePart type="family">Meij</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emine</namePart>
<namePart type="family">Yilmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While state-of-the-art Dialogue State Tracking (DST) models show promising results, all of them rely on a traditional cross-entropy loss function during the training process, which may not be optimal for improving the joint goal accuracy. Although several approaches recently propose augmenting the training set by copying user utterances and replacing the real slot values with other possible or even similar values, they are not effective at improving the performance of existing DST models. To address these challenges, we propose a Turn-based Loss Function (TLF) that penalises the model if it inaccurately predicts a slot value at the early turns more so than in later turns in order to improve joint goal accuracy. We also propose a simple but effective Sequential Data Augmentation (SDA) algorithm to generate more complex user utterances and system responses to effectively train existing DST models. Experimental results on two standard DST benchmark collections demonstrate that our proposed TLF and SDA techniques significantly improve the effectiveness of the state-of-the-art DST model by approximately 7-8% relative reduction in error and achieves a new state-of-the-art joint goal accuracy with 59.50 and 54.90 on MultiWOZ2.1 and MultiWOZ2.2, respectively.</abstract>
<identifier type="citekey">manotumruksa-etal-2021-improving-dialogue</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.144</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.144</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>1674</start>
<end>1683</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Dialogue State Tracking with Turn-based Loss Function and Sequential Data Augmentation
%A Manotumruksa, Jarana
%A Dalton, Jeff
%A Meij, Edgar
%A Yilmaz, Emine
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F manotumruksa-etal-2021-improving-dialogue
%X While state-of-the-art Dialogue State Tracking (DST) models show promising results, all of them rely on a traditional cross-entropy loss function during the training process, which may not be optimal for improving the joint goal accuracy. Although several approaches recently propose augmenting the training set by copying user utterances and replacing the real slot values with other possible or even similar values, they are not effective at improving the performance of existing DST models. To address these challenges, we propose a Turn-based Loss Function (TLF) that penalises the model if it inaccurately predicts a slot value at the early turns more so than in later turns in order to improve joint goal accuracy. We also propose a simple but effective Sequential Data Augmentation (SDA) algorithm to generate more complex user utterances and system responses to effectively train existing DST models. Experimental results on two standard DST benchmark collections demonstrate that our proposed TLF and SDA techniques significantly improve the effectiveness of the state-of-the-art DST model by approximately 7-8% relative reduction in error and achieves a new state-of-the-art joint goal accuracy with 59.50 and 54.90 on MultiWOZ2.1 and MultiWOZ2.2, respectively.
%R 10.18653/v1/2021.findings-emnlp.144
%U https://aclanthology.org/2021.findings-emnlp.144
%U https://doi.org/10.18653/v1/2021.findings-emnlp.144
%P 1674-1683
Markdown (Informal)
[Improving Dialogue State Tracking with Turn-based Loss Function and Sequential Data Augmentation](https://aclanthology.org/2021.findings-emnlp.144) (Manotumruksa et al., Findings 2021)
ACL