@inproceedings{yalunin-etal-2021-generating-mammography,
title = "Generating Mammography Reports from Multi-view Mammograms with {BERT}",
author = "Yalunin, Alexander and
Sokolova, Elena and
Burenko, Ilya and
Ponomarchuk, Alexander and
Puchkova, Olga and
Umerenkov, Dmitriy",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.15",
doi = "10.18653/v1/2021.findings-emnlp.15",
pages = "153--162",
abstract = "Writing mammography reports can be error-prone and time-consuming for radiologists. In this paper we propose a method to generate mammography reports given four images, corresponding to the four views used in screening mammography. To the best of our knowledge our work represents the first attempt to generate the mammography report using deep-learning. We propose an encoder-decoder model that includes an EfficientNet-based encoder and a Transformer-based decoder. We demonstrate that the Transformer-based attention mechanism can combine visual and semantic information to localize salient regions on the input mammograms and generate a visually interpretable report. The conducted experiments, including an evaluation by a certified radiologist, show the effectiveness of the proposed method.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yalunin-etal-2021-generating-mammography">
<titleInfo>
<title>Generating Mammography Reports from Multi-view Mammograms with BERT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Yalunin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Sokolova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilya</namePart>
<namePart type="family">Burenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Ponomarchuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Puchkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dmitriy</namePart>
<namePart type="family">Umerenkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Writing mammography reports can be error-prone and time-consuming for radiologists. In this paper we propose a method to generate mammography reports given four images, corresponding to the four views used in screening mammography. To the best of our knowledge our work represents the first attempt to generate the mammography report using deep-learning. We propose an encoder-decoder model that includes an EfficientNet-based encoder and a Transformer-based decoder. We demonstrate that the Transformer-based attention mechanism can combine visual and semantic information to localize salient regions on the input mammograms and generate a visually interpretable report. The conducted experiments, including an evaluation by a certified radiologist, show the effectiveness of the proposed method.</abstract>
<identifier type="citekey">yalunin-etal-2021-generating-mammography</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.15</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.15</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>153</start>
<end>162</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Mammography Reports from Multi-view Mammograms with BERT
%A Yalunin, Alexander
%A Sokolova, Elena
%A Burenko, Ilya
%A Ponomarchuk, Alexander
%A Puchkova, Olga
%A Umerenkov, Dmitriy
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F yalunin-etal-2021-generating-mammography
%X Writing mammography reports can be error-prone and time-consuming for radiologists. In this paper we propose a method to generate mammography reports given four images, corresponding to the four views used in screening mammography. To the best of our knowledge our work represents the first attempt to generate the mammography report using deep-learning. We propose an encoder-decoder model that includes an EfficientNet-based encoder and a Transformer-based decoder. We demonstrate that the Transformer-based attention mechanism can combine visual and semantic information to localize salient regions on the input mammograms and generate a visually interpretable report. The conducted experiments, including an evaluation by a certified radiologist, show the effectiveness of the proposed method.
%R 10.18653/v1/2021.findings-emnlp.15
%U https://aclanthology.org/2021.findings-emnlp.15
%U https://doi.org/10.18653/v1/2021.findings-emnlp.15
%P 153-162
Markdown (Informal)
[Generating Mammography Reports from Multi-view Mammograms with BERT](https://aclanthology.org/2021.findings-emnlp.15) (Yalunin et al., Findings 2021)
ACL
- Alexander Yalunin, Elena Sokolova, Ilya Burenko, Alexander Ponomarchuk, Olga Puchkova, and Dmitriy Umerenkov. 2021. Generating Mammography Reports from Multi-view Mammograms with BERT. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 153–162, Punta Cana, Dominican Republic. Association for Computational Linguistics.