@inproceedings{sarkar-etal-2021-fbert-neural,
title = "f{BERT}: A Neural Transformer for Identifying Offensive Content",
author = "Sarkar, Diptanu and
Zampieri, Marcos and
Ranasinghe, Tharindu and
Ororbia, Alexander",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.154",
doi = "10.18653/v1/2021.findings-emnlp.154",
pages = "1792--1798",
abstract = "Transformer-based models such as BERT, XLNET, and XLM-R have achieved state-of-the-art performance across various NLP tasks including the identification of offensive language and hate speech, an important problem in social media. In this paper, we present fBERT, a BERT model retrained on SOLID, the largest English offensive language identification corpus available with over 1.4 million offensive instances. We evaluate fBERT{'}s performance on identifying offensive content on multiple English datasets and we test several thresholds for selecting instances from SOLID. The fBERT model will be made freely available to the community.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sarkar-etal-2021-fbert-neural">
<titleInfo>
<title>fBERT: A Neural Transformer for Identifying Offensive Content</title>
</titleInfo>
<name type="personal">
<namePart type="given">Diptanu</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Ororbia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Transformer-based models such as BERT, XLNET, and XLM-R have achieved state-of-the-art performance across various NLP tasks including the identification of offensive language and hate speech, an important problem in social media. In this paper, we present fBERT, a BERT model retrained on SOLID, the largest English offensive language identification corpus available with over 1.4 million offensive instances. We evaluate fBERT’s performance on identifying offensive content on multiple English datasets and we test several thresholds for selecting instances from SOLID. The fBERT model will be made freely available to the community.</abstract>
<identifier type="citekey">sarkar-etal-2021-fbert-neural</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.154</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.154</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>1792</start>
<end>1798</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T fBERT: A Neural Transformer for Identifying Offensive Content
%A Sarkar, Diptanu
%A Zampieri, Marcos
%A Ranasinghe, Tharindu
%A Ororbia, Alexander
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F sarkar-etal-2021-fbert-neural
%X Transformer-based models such as BERT, XLNET, and XLM-R have achieved state-of-the-art performance across various NLP tasks including the identification of offensive language and hate speech, an important problem in social media. In this paper, we present fBERT, a BERT model retrained on SOLID, the largest English offensive language identification corpus available with over 1.4 million offensive instances. We evaluate fBERT’s performance on identifying offensive content on multiple English datasets and we test several thresholds for selecting instances from SOLID. The fBERT model will be made freely available to the community.
%R 10.18653/v1/2021.findings-emnlp.154
%U https://aclanthology.org/2021.findings-emnlp.154
%U https://doi.org/10.18653/v1/2021.findings-emnlp.154
%P 1792-1798
Markdown (Informal)
[fBERT: A Neural Transformer for Identifying Offensive Content](https://aclanthology.org/2021.findings-emnlp.154) (Sarkar et al., Findings 2021)
ACL
- Diptanu Sarkar, Marcos Zampieri, Tharindu Ranasinghe, and Alexander Ororbia. 2021. fBERT: A Neural Transformer for Identifying Offensive Content. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 1792–1798, Punta Cana, Dominican Republic. Association for Computational Linguistics.