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Abstract

Question answering models struggle to gen-
eralize to novel compositions of training pat-
terns, such to longer sequences or more com-
plex test structures. Current end-to-end mod-
els learn a flat input embedding which can
lose input syntax context. Prior approaches
improve generalization by learning permuta-
tion invariant models, but these methods do
not scale to more complex train-test splits. We
propose Grounded Graph Decoding, a method
to improve compositional generalization of
language representations by grounding struc-
tured predictions with an attention mechanism.
Grounding enables the model to retain syn-
tax information from the input in thereby sig-
nificantly improving generalization over com-
plex inputs. By predicting a structured graph
containing conjunctions of query clauses, we
learn a group invariant representation with-
out making assumptions on the target domain.
Our model significantly outperforms state-of-
the-art baselines on the Compositional Free-
base Questions (CFQ) dataset, a challenging
benchmark for compositional generalization
in question answering. Moreover, we effec-
tively solve the MCD1 split with 98% accu-
racy. All source is available at https://
github.com/gaiyu0/cfq.

1 Introduction

Can neural networks “make infinite use of finite
means" with language (Chomsky and Lightfoot,
2002)? The ability of humans to reason composi-
tionally enables us to form novel complex com-
pound sentences by combining constituent con-
cepts. Toki Pona (Lang, 2014) is an engineered
language with only 120 words but can express a
wide variety of concepts through composition.

Compositionality specifically refers to the phe-
nomenon that the meaning of an expression is given
by combining the meanings of its parts (Montague,

∗ equal contribution

Figure 1: An illustration of Grounded Graph Decoding
with the question “Who directed and produced Goldfin-
ger and Inception?". The predicates “direct(ed)" and
“produce(d)", and the entities “Goldfinger" and “Incep-
tion" are grouped together by the sequence encoder.
Black lines represent linear transforms between latent
spaces, while the red line represents the attention that
grounds the prediction.

1970). For example, after understanding the ques-
tions “Who directed Inception?” and “Did Christo-
pher Nolan produce Goldfinger?”, one can under-
stand “Who produced Inception?".

However, it’s unclear whether neural networks
truly reason compositionally; for example, Min
et al. (2019) argue that compositional reasoning is
not necessary to answer complex composite ques-
tions. To benchmark the performance of neural
models under compositional generalization, Lake
and Baroni (2018) propose the SCAN dataset con-
taining sequences of instructions. SCAN uses
length of input as a proxy for compositional com-
plexity. However, SCAN’s length-based splits are
now considered solved (Chen et al., 2020).

As a more realistic benchmark, Keysers et al.
(2020) introduced the Compositional Freebase
Questions (CFQ) dataset. CFQ is a challenging
knowledge graph question answering task with ad-

https://github.com/gaiyu0/cfq
https://github.com/gaiyu0/cfq
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versarial splits (MCD1, MCD2 and MCD3) that
maximize compositional divergence between train
and test sets. While a simple LSTM model achieves
near-perfect accuracy on an i.i.d. split, large mod-
els such as T5-11B (Raffel et al., 2019) performs
catastrophically poorly on the MCD splits.

We hypothesize current models perform poorly
on the CFQ task as they fail to take semantic
and syntactic structures into account. We propose
Grounded Graph Decoding to incorporate these
structures with graph decoding and grounding. The
encoder often fails to match common syntactic pat-
terns from the input text question. We modify the
decoder with attention over the input sequence to
enable referencing specific input syntactic struc-
tures. Moreover, we find the semantics of knowl-
edge graph queries (SPARQL) is a conjunctive
query graph. Sequence decoders fail to represent
this structure well. We integrate semantic structure
by decoding output predictions as a graph.

Our work makes the following contributions:

• We ground the decoder using the input text in
order to improve understanding of questions
with novel syntactic structures.

• We leverage a conjunctive query graph de-
coder to enable generation of novel complex
SPARQL queries.

• On the challenging Compositional Free-
base Questions (CFQ) benchmark, Grounded
Graph Decoding effectively solves the MCD1
split while achieving state-of-the art results on
the remaining two splits.

2 Preliminaries

We formally present an overview of composi-
tional generalization in deep learning to motivate
Grounded Graph Decoding.

2.1 Compositional generalization and its
benchmarks

Training models that achieve compositional gen-
eralization would be an important advancement
for both practical systems and for furthering our
understanding of intelligence more broadly as com-
positional intelligence is a key characteristic of
the human mind. Moreover, compositional gener-
alization would improve the sample efficiency of
models, as argued by Lake and Baroni (2018). This
would improve answers for rare questions while

accelerating learning by decomposing the combi-
natorial nature of language.

Benchmarks for compositional generalization
measure how well neural models trained on one
set of structures generalize to an unseen test set
with novel structures. Lake and Baroni (2018)
experimented with several heuristics for splitting
seq2seq datasets, such as splitting by sequence
length, and found that some of them posed sig-
nificant challenge for state-of-the-art sequence-to-
sequence (seq2seq) models to generalize.

Keysers et al. (2020) take a systematic approach
based on the distinction between atoms and com-
pounds. For example, in the questions “Who di-
rected Inception?” and “Did Christopher Nolan
produce Goldfinger?”, the atoms are the primitive
elements that form these questions. These ele-
ments include the predicates “direct(ed)” and “pro-
duce(d)”, the question patterns “Who [predicate]
[entity]” and “Did [entity1] [predicate] [entity2]”,
and the entities “Inception”, “Christopher Nolan”,
etc. Compounds are intuitively combinations of
atoms, such as “Who directed [entity]?”, which
is the combination of the predicate “direct(ed)"
and the question template “Who [predicate] [en-
tity]?”, etc. Keysers et al. (2020) proposes the
following objective for partitioning the dataset: (a)
minimum atom divergence, which ensures atoms
that occur in test sets also occur in training sets
and (b) maximum compound divergence, which
maximizes the number of compounds in test sets
that are not present in training sets.

Intuitively, in order to succeed on such splits, a
model has to both learn the meaning of atoms, and
learn the rules that combine the atoms. A reason-
able question to appear in the test set of a MCD
split, if the two questions above occur in the train-
ing set of the split, can be “Who produced Goldfin-
ger?", which consists of only known atoms, but
entirely different compositions.

2.2 Conjunctive queries and knowledge
graph question answering (KG-QA)

Many factual questions can be answered by execut-
ing conjunctive queries against knowledge graphs
(KG). Formally, given a KG K = (E ,R) that con-
sists of a set of entities E and a set of relation triples
R, a conjunctive query

∃x1, . . . , xn.r1(s1, o1) ∧ . . . ∧ rm(sm, om)

against K is the conjunction of predicates
r1(s1, o1), . . . , rm(sm, om). The subject si and
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object oi of each predicate can be either an en-
tity in E , or one of the variables x1, . . . , xn,
and predicate ri(si, oi) is true if and only if
relation ri holds between si and oi in K.
For example, to answer the question “Who di-
rected and produced Inception?", we can use
the conjunctive query “∃x.direct(x, Inception) ∧
produce(x, Inception)". Although general queries,
such as lambda dependency-based compositional
semantics (Liang, 2013) are also popular in the
KG-QA literature, both SCAN and CFQ find that
parsing questions into conjunctive queries alone
presents a nontrivial challenge to compositional
generalization despite their simplicity.

Compared to other question answering settings,
such as reading comprehension question answering
(RC-QA), KG-QA is exclusively concerned with
question comprehension, making it an ideal unit
test for QA models. We consider the strongly su-
pervised setting of KG-QA, where each question
for training is paired with a query that, when exe-
cuted against a KG, yields the question’s answer.
Although this is less challenging than the weakly
supervised setting, where only answers to ques-
tions are available, both (Keysers et al., 2020) and
(Furrer et al., 2020) show that this setting already
requires a level of compositional generalization not
yet possessed by existing systems.

2.3 Compositionality and compositional
language representation

Compositionality refers to the phenomenon that the
meaning of an expression is given by combining
the meanings of its parts (Montague, 1970). Specif-
ically, for an expression z composed of subexpres-
sions x and y, its semantics τ(z) is given by

τ(z) = τ(x⊕ y) = τ(x)� τ(y)

where ⊕ is a syntactic composition operator, � is
an semantic composition operator, and the seman-
tics τ(x) and τ(y) of x and y are given recursively
by the same rule.

For example, the meaning of the phrase “direct
and produce" is given by the conjunction of the
words “direct" and “produce". In this case the syn-
tactic composition operator ⊕ simply takes two
words and adds an “and" in between, while the
semantic composition operator � yields the con-
junction of the two predicates. This phrase can
be further composed with other phrases to express
more complex meanings. Various formalisms exist

for this process, such as the Compositional Catego-
rial Grammar (Zettlemoyer and Collins, 2005).

The key question is how to model semantics
in vector spaces. Motivated by Montague (1970),
Andreas (2019) defines a neural model as compo-
sitional if it is a homomorphism from syntax trees
to vector representations, that is, for an expression
z = x⊕ y, its representation θ(z) is given by:

θ(z) = θ(x⊕ y) = θ(x)� θ(y)

This formulation should be simple to implement
if both the syntactic and semantic structure of a
language is known. However, a key challenge to
building compositional natural language represen-
tation is the lack of both syntactic and semantic
structure. First, natural languages only loosely fol-
low the compositionality principle. Especially, nat-
ural languages are not always context-free, which
is implicitly assumed in this formulation of compo-
sitionality. The semantics τ(x) can depend on only
the phrase x only and not on phrase y. Second, the
syntactic structure is not always known.

Despite the excellent performance of con-
stituency parsers on benchmarks, they may gener-
alize poorly to compositionally complex questions
(see Section 4 for more discussion). Despite sub-
stantial progress in the NLP community to learn
vector representations of semantics, how to learn
compositionally generalizable vector representa-
tions of semantics without much knowledge of
compositional structures remains challenging.

3 Methodology: Grounded Graph
Decoding

In the following sections, we first describe how to
decode conjunctive query graphs from natural lan-
guage questions, then how to incorporate syntactic
compositions in graph decoding, and finally intro-
duce a grounding mechanism by explicitly condi-
tioning graph decoding on syntactic compositions.

3.1 Graph decoding

A conjunctive query can be naturally represented
as a directed graph by representing subjects and
objects in the query as nodes, and relational predi-
cates in the query as directed edges. For example,
the conjunctive query

∃x1.direct(x1, Inception)∧produce(x1, Inception)
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can be represented as a directed graph with nodes
x1 and “Inception", and edges

x1
direct−−−→ Inception x1

direct−−−→ Goldfinger

where the type of an edge is the relation in the cor-
responding relational predicate. The key benefit
of the directed graph representation is permutation
invariance. Directed graphs are invariant to order-
ing of edges as conjunctive queries are invariant to
ordering of relational predicates.

Similar to the graph decoder architecture pro-
posed by Kipf and Welling (2016), our graph de-
coder first generates embeddings for nodes, and
then predicts edges in graphs using the node em-
beddings. For simplicity, we assume that questions
are tokenized into words, and entities in questions
have been found and anonymized (Finegan-Dollak
et al., 2018). The embedding of an entity node is
simply the contextual embedding of its mentions
in the question. If an entity is mentioned multi-
ple times in the question, its node embedding is
the sum of the contextual embeddings of all its
mentions. Given a question q consisting of tokens
q1, . . . , ql, we concatenate the question with the list
of variables x1, . . . , xn into a new sequence

q1, . . . , ql, [SEP], x1, . . . , xn

and input this sequence to a sequence encoder, such
as an LSTM (Hochreiter and Schmidhuber, 1997).
The embedding of the variable node xi is the con-
textual embedding of the token xi. Intuitively, these
contextual node embeddings capture relations be-
tween both entity and variable nodes. We denote
the embedding for node v as hv.

Given the node embeddings, the probability that
an edge s r−→ o exists between subject s and object
o is modeled as

P (s
r−→ o|q) = σ

(
wTr [hs, ho]

)
(1)

where σ denotes the sigmoid function, wTr ∈ R2d

is the weight vector specific to relation r, hs and ho
are the node embeddings of subject s and object o
respectively, and [·, ·] denotes vector concatenation.
Multiple relations may hold between an entity pair.

The model is trained to maximize the conditional
log-likelihood of all conjunctive query graphs in

training set Q:

L =
∑
q∈Q

logP (τ(q)|q)

=
∑
q∈Q

∑
s

r−→o∈E(τ(q))

logP (s
r−→ o|q)

+
∑

s
r−→o 6∈E(τ(q))

log(1− P (s r−→ o|q)) (2)

where τ(q) denotes the conjunctive query graph for
question q, and E(τ(q)) denotes the edges in τ(q).

3.2 Incorporating syntactic compositions
Although our graph decoder incorporates the com-
positional structure of conjunctive queries, it still
cannot capture syntactic compositions in natural
language questions due to the lack of composi-
tionality in the sequence encoder. A solution to
the problem is to embed syntactic structures in the
sequence encoder. In general, however, these struc-
tures can be hard to identify.

We manually evaluated parses returned by the
Stanford constituency parser (Bauer, 2014) given
questions in the CFQ dataset, and observed a high
error rate, possibly due to complex compositional
structures in the questions. As a pilot study, in-
stead of incorporating syntactic compositions ex-
haustively, we only consider a simple syntactic
composition “A and B", where “A" and “B" share
the same part-of-speech. This composition can be
reliably identified using part-of-speech (PoS) tag-
ging. Following the suggestion of Andreas (2019),
the embeddings θ that model semantic composi-
tions should satisfy

θ(“A and B") = θ(“A")� θ(“B")

A key criterion for choosing the semantic composi-
tion operator� is permutation invariance, which is
evident from the fact that “A and B" has the same
meaning as “B and A". We model the semantics
of both “A" and “B" using learnable vector embed-
dings, and model the semantic composition using
vector addition. This model can be easily extended
to the case where both “A" and “B" are phrases, in
which case both θ(“A") and θ(“B") can be embed-
dings generated by sequence encoders, and � can
be any learnable composition operator. However,
for simplicity, we only consider the case that “A"
and “B" are single words. To implement this idea,
instead of inputting

q1, . . . , ql, [SEP], x1, . . . , xn



1833

to the sequence encoder, we now merge the phrases
like “A and B" into a single token, which we call a
group, and input the groups to a sequence encoder

g1, . . . , gk, [SEP], x1, . . . , xn

The embedding xg of a group g is given by

θ(g) =
∑
w∈g

θ(w)

where θ(w) is the embedding of word w. For ex-
ample, the embedding of “A and B" is θ(A)+θ(B).
The sum can be replaced by learnable composi-
tion operators to model more complex semantic
compositions.

When an entity is mentioned in a group, we use
the contextual embedding of the group as its node
embedding. The probability for the conjunctive
query graph to contain a predicate s r−→ o is now
modeled as

P (s
r−→ o|q) = σ

(
wTr [gs, go]

)
(3)

and all parameters are still learned by maximizing
the joint log-likelihood in Eqn. 2.

3.3 Grounded graph decoding
Curiously, we find in preliminary experiments that
although incorporating syntactic compositions in
the sequence encoder improves compositional gen-
eralization, the incorporated syntactic composi-
tions are not always reflected in the model’s out-
puts. For example, given the question “Who di-
rected and produced Inception?", the model may
output only the predicate direct(x, Inception) but
not the other predicate produce(x, Inception), de-
spite “produced" being grouped with “directed" by
the sequence encoder.

The phenomenon indicates that syntactic compo-
sitions are insufficiently preserved, and the model
actually fails to learn the correspondence between
syntactic and semantic compositions. To encourage
the model to learn the correspondence, we propose
to augment the graph decoder with a mechanism
that enables it to ground its outputs in syntactic
compositions. Specifically, we add a grounded em-
bedding zs,o to Eqn. 3:

P (s
r−→ o|q) = σ(wTr [hs, ho, zs,o])

The grounded embedding zs,o is given by an
weighted average over syntax compositions. Math-
ematically,

zs,o =
l∑

k=1

α(k)
s,oνk =

l∑
k=1

α(k)
s,o

∑
w∈gk

xw

The attention weight α(k)
s,o , which quantifies the

relevance of the k-th group to the subject-object
pair (s, o), is given by

α(k)
s,o =

exp(a
(k)
s,o/
√
d)∑l

j=1 exp(a
(j)
s,o/
√
d)

where following Vaswani et al. (2017), we set the
temperature of the softmax function to

√
d, square

root of the latent space dimension. The unnor-
malized attention score a(k)s,o is given by an inner
product between the query qs,o and the key κk

a(k)s,o = qTs,oκk

Both the query qs,o and the key κk are given by
linear transforms of their contextual embedding

qs,o = Q[hs, ho] κk = Khk

All parameters in the model are still learned by
maximizing the joint log-likelihood in Eqn. 2. We
append a special “NIL" token to the end of each
question, so that the graph decoder can attend to
this token when no relation exists between a pair
of subject and object. See Fig. 1 for an illustration
of the architecture. As this embedding is specific
to node pairs, the model is able to ground different
edges in different syntactic compositions.

4 Experiments

We evaluate Grounded Graph Decoding to under-
stand how grounding as well as graph decoding
improve semantic and syntactic understanding.

4.1 Dataset
We evaluate our model using the Compositional
Freebase Queries (CFQ) dataset (Keysers et al.,
2020), a semantic parsing dataset consisting of
approximately 240k natural language questions
paired with conjunctive queries. Compared to other
semantic parsing datasets, the CFQ dataset features
richer question patterns, making it an ideal bench-
mark for compositional generalization (see Keysers
et al. (2020) for a quantitative comparison).

The CFQ dataset consists of three Maximum-
Compound Divergence (MCD) splits (MCD1,
MCD2, and MCD3), constructed by running a
greedy algorithm with different initializations that
maximize compound divergence between training
and test sets, while keeping atom divergence be-
tween them minimum (see Section 2 for more de-
tails about atom and compound divergence).
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Method # Params. Accuracy per-split
MCD1 MCD2 MCD3

LSTM w/ attention (Keysers et al., 2020) 28.9 ± 1.8% 5.0 ± 0.8% 10.8 ± 0.6%
Transformer (Keysers et al., 2020) 34.9 ± 1.1% 8.2 ± 0.3% 10.6 ± 1.1%
Universal Transformer (Keysers et al., 2020) 37.4 ± 2.2% 8.1 ± 1.6% 11.3 ± 0.3%
Evolved Transformer (Keysers et al., 2020) 42.4 ± 1.0% 9.3 ± 0.8% 10.8 ± 0.2%
T5-base (Furrer et al., 2020) 220M 57.6 ± 1.4% 19.5 ± 1.0% 16.6 ± 1.5%
T5-large (Furrer et al., 2020) 770M 63.3 ± 0.6% 22.2 ± 1.5% 18.8 ± 2.6%
T5-11B (Furrer et al., 2020) 11000M 61.4 ± 4.8% 30.1 ± 2.2% 31.2 ± 5.7%
T5-11B (modified) (Furrer et al., 2020) 11000M 61.6 ± 12.4% 31.3 ± 12.8% 33.3 ± 2.3%

Grounded Graph Decoding 0.3M 97.9 ± 0.2% 47.1 ± 10.4% 50.8 ± 17.2%

Table 1: CFQ evaluation without tuning on development sets Grounded Graph Decoding achieves significantly
higher performance than state-of-the-art seq2seq baselines across all MCD splits. As the MCD1 accuracy of
Grounded Graph Decoding is withing the range of baselines trained on the random split (∼ 98%), we consider
MCD1 to be solved.

Method # Params. Accuracy per-split
MCD1 MCD2 MCD3

Hierarchical Poset Decoding (Guo et al., 2020) 79.6% 59.6% 67.8%
CBR-KGQA (Das et al., 2021) 87.9% 61.3% 60.6%
T5-3B (Herzig et al., 2021) 3000M 65.0% 41.0% 42.6%
LIR + RIR (T5-3B) (Herzig et al., 2021) 3000M 88.4% 85.3% 77.9%

Grounded Graph Decoding 0.3M 98.6% 67.9% 77.4%

Table 2: CFQ evaluation with tuning on development sets Keysers et al. (2020) discourage tuning models with
development sets in MCD splits as it compromises the divergence split. We therefore report separately in Table 2
results obtained with tuning on development sets. Results without tuning on development sets are not reported in
Guo et al. (2020), Herzig et al. (2021), and Das et al. (2021).

4.2 Baselines

We compare Grounded Graph Decoding with vari-
ous baselines established by Keysers et al. (2020)
and Furrer et al. (2020), as well as HPD (Guo et al.,
2020), CBR-KBQA (Das et al., 2021), as well as
the fine-tuning scheme by Herzig et al. (2021).

The baseline seq2seq models include LSTM
(Hochreiter and Schmidhuber, 1997) with atten-
tion (Bahdanau et al., 2015), Transformer (Vaswani
et al., 2017), Universal Transformer (Dehghani
et al., 2019), Evolved Transformer (So et al., 2019),
and T5 (Raffel et al., 2019), all of which, except
"T5-11B (modified)", output conjunctive queries as
sequences of tokens. “T5-11B (modified)" refers
to a scheme proposed by Furrer et al. (2020) in
which T5 models only need to output conjunctive
queries that are aligned with syntactic structures
in questions. All seq2seq baselines are reported in
Keysers et al. (2020) and Furrer et al. (2020).

Hierarchical Poset Decoding (HPD) follows the

encoder-decoder architecture of seq2seq models,
but instead of outputting conjunctive queries as se-
quences of tokens, it outputs them as posets. Com-
pared to seq2seq models, this has the advantage
that posets are partially invariant to permutation of
relational predicates, although decoding actually
can be made fully permutation invariant using the
graph representation described in Section 3.

Concurrent work, CBR-KBQA (Das et al.,
2021), is a semi-parametric scheme in which a
parametric model parses questions into queries at
test by combining relevant queries in training sets.

Concurrent work from (Herzig et al., 2021) pro-
poses to fine-tune pre-trained models with not only
questions and queries but also intermediate query
representations that align with question structures.
(The reported results are obtained using a T5 model
with 3 billion parameters). Although this scheme
is model-agnostic, designing intermediate query
representations that align with question structures
requires nontrivial insights into correspondence be-
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Method MCD1 MCD2 MCD3

Poset Decoding (Guo et al., 2020) 21.3% 6.4% 10.1%

Grounded Graph Decoding 98.6% 67.9% 77.4%
Syntax-aware graph decoding 76.0% 29.0% 32.7%
Graph decoding only 59.1% 25.7% 20.4%

Table 3: Ablations of Grounded Graph Decoding. Both grounding and grouping significantly improve accuracy
on all splits. We also compare our bare graph decoder with poset decoding to show the advantage of the directed
graph representation.

tween question and query structures. Grounded
Graph Decoding learns the correspondence end-to-
end thanks to the grounding mechanism.

4.3 Evaluation methodology
(Keysers et al., 2020) note that the structure of the
development set is similar to the test set. There-
fore, hyperparameter tuning could leak information
from the test set. Unfortunately, not all baselines
follow this evaluation procedure. Therefore, we
report results obtained via development set tun-
ing separately in Table 2. Results without tuning
on development sets are not reported in Guo et al.
(2020), Herzig et al. (2021), and Das et al. (2021).
All results in Table 1 are obtained without tuning
on development sets.

4.4 Ablations
We benchmarked the following ablations of
Grounded Graph Decoding:

• Graph decoding only This is the bare graph
decoder architecture described in Section 3.1,
which uses a sequence encoder without aware-
ness of syntactic composition and does not
have the grounding mechanism.

• Syntax-aware graph decoding This is the ar-
chitecture described in Section 3.2, with a
graph decoder on top of a sequence encoder
aware of the “A and B" syntax.

The purpose of the ablation study is to validate
the effectiveness of both (1) syntax-aware sequence
encoders and (2) the grounding mechanism. We
also compare graph decoding with poset decoding
to show the benefit of graph decoding.

4.5 Results and discussion
We report performance of models tuned with and
without development sets in Table 2 and Table 1 re-
spectively. Remarkably, in both settings, on the

MCD1 split Grounded Graph Decoding attains
accuracies attained previously only with random
splits, effectively solving the split.

On the MCD2 and MCD3 splits of the CFQ
dataset, Grounded Graph Decoding consistently
outperforms the pre-trained T5 models regardless
of their size (without the fine-tuning trick proposed
by Herzig et al. (2021)), as well as HPD and CBR-
KGQA. T5 performs remarkably when fine-tuned
with lossy and reversible intermediate represen-
tations (LIR + RIR), though the results are not
very surprising given that the LIRs and RIRs used
for fine-tuning are tailored specifically to the CFQ
dataset and can thus drastically ease the task.

Our error analysis shows that Grounded Graph
Decoding is not able to completely solve the re-
maining two splits (MCD2 and MCD3) primarily
as it only incorporates one type of syntactic com-
position, namely conjunctive queries of the form
of “A and B". Pre-trained approaches such as T5
support a wider range of syntactic structures due to
a more general training objective. However, rich
syntactic structures acquired from pre-training con-
tribute little to the compositional generalization.

We find that performance of T5 models are close
to our graph decoder without any added compo-
sitionality (see Table 1). This suggests that pre-
trained language models understand the syntax of
conjunctive queries, possibly because their pre-
training corpus contains conjunctive queries. How-
ever, their generally low performance indicates that
they do not utilize the information. Domain spe-
cific IRs could mitigate these challenges but are
complex to apply to a real-world dataset like CFQ.

The ablation study verifies that graph decoder,
syntax-aware sequence encoder, and the grounding
mechanism are all important to compositional gen-
eralization. Grounding with graph decoding alone
(no permutation invariance) results in a state-of-
the-art model on the MCD1 split. However, this
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model struggles with MCD2 and MCD3. We also
find that a directed graph is a better representation
of conjunctive queries than poset decoding. This
is due partially to the richer structure of a graph
which is a natural fit for common query patterns.

4.6 Future work

There are several clear areas of future work beyond
Grounded Graph Decoding. First, our method is
highly complementary with pre-training based ap-
proaches to improving compositional generaliza-
tion. Second, incorporating more complex syntac-
tic structures which will likely further boost our
results. Error analysis revealed conjunctive struc-
tures predominantly help improve accuracy in the
MCD1 split but have less impact on the other splits.

5 Related work

Various approaches to the compositional general-
ization challenge posted by the CFQ dataset has
been explored in prior or contemporary works, in-
cluding Guo et al. (2020), Das et al. (2021), and
Herzig et al. (2021). These approaches are dis-
cussed in more detail in Section 4.

Another promising approach that has received
relatively less attention so far is grammar induc-
tion, which can potentially derive grammar rules
directly from question-query pairs. Grammar in-
duction methods, such as Zettlemoyer and Collins
(2005), typically assumes a limited set of grammar
rules to bootstrap the model, and then search some
grammar spaces to find grammars that can lead to
successful parsing of observed questions.

The idea of grammar induction has inspired var-
ious work that to different extent solved the SCAN
dataset, such as Nye et al. (2020) or Chen et al.
(2020). The advantage of grammar induction meth-
ods is that they can potentially identify the com-
plete set of transformation rules and thus attain per-
fect compositional generalization. However, gram-
mar induction methods are generally search-based,
which limits their scalability to long sentences due
to the size of search spaces.

Additionally, there has been considerable re-
search in the semantic parsing literature to design
neural network architectures that incorporate dif-
ferent query structures, including tree (Dong and
Lapata, 2016), graph (Buys and Blunsom, 2017;
Damonte et al., 2017; Lyu and Titov, 2018; Fan-
cellu et al., 2019). However, these architectures
only incorporating query structures without incor-

porating syntactic structures in questions. Our abla-
tion study (Table 3) indicates that only incorporat-
ing query structure is insufficient for compositional
generalization. Our graph decoder alone only at-
tains performance on bar with T5 models.

Similar to our work, Russin et al. (2019) also pro-
poses to improve the compositional generalization
of seq2seq models using attention. However, their
work only studies token-level attention without con-
sideration of syntactic or semantic structures. Both
Russin et al. (2019) and Gordon et al. (2020) use
part-of-speech (PoS) tags to attain some level of
invariance among words that share the same PoS.

Finally, in the domain of semantic parsing, prior
to Keysers et al. (2020), Finegan-Dollak et al.
(2018) proposed to split datasets such that train-
ing and test sets contain no common SQL patterns.
Although this approach increases task difficulty,
different SQL query patterns may still share similar
substructures, which enables neural networks to
solve the tasks relatively easily using the “mix-and-
match" strategy (Lake and Baroni, 2018).

6 Conclusion

In this paper we propose Grounded Graph Decod-
ing to make compositionally generalizable predic-
tions of conjunctive query from natural language
questions. Our model consists of a graph decoder
that captures permutation invariance in conjunc-
tive queries, a sequence encoder that is aware of
syntactic composition, and an attention mechanism
that enables strong association between syntactic
and semantic compositions. The proposed method
solves the MCD1 split of the challenging CFQ
dataset, and improves the state-of-the-art of the
other two splits. Notably, Grounded Graph Decod-
ing significantly outperforms competitive baselines
including large pre-trained models (such as T5) as
well as domain-specific models. Careful ablations
of our method demonstrate the importance of both
graph decoding and grounding.
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