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Abstract

Pre-trained language models (PrLM) have to
carefully manage input units when training
on a very large text with a vocabulary con-
sisting of millions of words. Previous works
have shown that incorporating span-level infor-
mation over consecutive words in pre-training
could further improve the performance of
PrLMs. However, given that span-level clues
are introduced and fixed in pre-training, pre-
vious methods are time-consuming and lack
of flexibility. To alleviate the inconvenience,
this paper presents a novel span fine-tuning
method for PrLMs, which facilitates the span
setting to be adaptively determined by specific
downstream tasks during the fine-tuning phase.
In detail, any sentences processed by the PrLM
will be segmented into multiple spans ac-
cording to a pre-sampled dictionary. Then
the segmentation information will be sent
through a hierarchical CNN module together
with the representation outputs of the PrLM
and ultimately generate a span-enhanced rep-
resentation. Experiments on GLUE bench-
mark show that the proposed span fine-tuning
method significantly enhances the PrLM, and
at the same time, offer more flexibility in
an efficient way. The code is available
at https://github.com/BAORONGZHOU/span-
fine-tuning.

1 Introduction

Pre-trained language models (PrLM), including
ELECTRA (Clark et al., 2020), RoBERTa(Liu
et al., 2019b), and BERT (Devlin et al., 2018),
have demonstrated strong performance in down-
stream tasks (Wang et al., 2018). Leveraging a
self-supervised training on large text corpora, these
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models are able to provide contextualized repre-
sentations in a more efficient way. For instance,
BERT uses Masked Language Modeling and Nest
Sentence Prediction as pre-training objects and is
trained on a corpus of 3.3 billion words.

In order to be adaptive for a wider range of ap-
plications, PrLMs usually generate sub-token-level
representations (words or subwords) as basic lin-
guistic units. For downstream tasks such as natural
language understanding (NLU), span-level repre-
sentations, e.g. phrases and name entities, are also
important. Previous works manifest that by chang-
ing pre-training objectives, PrLMs’ ability to cap-
ture span-level information can be strengthened to
some extent. For example, base on BERT, Span-
BERT (Joshi et al., 2019) focuses on masking and
predicting text spans, instead of sub-token-level
information for pre-training. Entity-level masking
is used as a pre-training strategy by ERNIE mod-
els (Sun et al., 2019; Zhang et al., 2019a). The
upper mentioned methods prove that the introduc-
tion of span-level information in pre-training to be
effective for different NLU tasks.

However, the requirements for span-level infor-
mation of various NLU tasks differs a lot from case
to case. The methods of introducing span-level
information in pre-training phase, proposed by pre-
vious works, do not fit into the requirements and
cannot improve the performance for all NLU tasks.
For instance, ERNIE models (Sun et al., 2019) per-
form remarkably well in Relation Classification,
while underperforms BERT in language inference
tasks, such as MNLI (Nangia et al., 2017). There-
fore, it is imperative to develop a strategy to incor-
porate span-level information into PrLMs in a more
flexible and universally adaptive way. This paper
proposes a novel approach, Span Fine-tuning (SF),
to leverage span-level information in fine-tuning
phase and therefore formulate a task-specific strat-
egy. Compared to existing works, our approach
requires less time and computing resources, and is
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more adaptive to various NLU tasks.
In order to maximize the value and contribu-

tion of span-level information, in additional to the
sub-token-level representation generated by BERT,
Span Fine-tuning also applies a computationally
motivated segmentation to further improve the over-
all experience. Although various techniques, such
as dependency parsing (Zhou et al., 2019) or se-
mantic role labeling (SRL) (Zhang et al., 2019b),
have been used as auxiliary tools for sentence seg-
mentation, these methods demand extra parsing
procedure, which increase complexities in actual
practice. Span Fine-tuning first leverages a pre-
sampled n-gram dictionary to segment input sen-
tences into spans. Then, the sub-token-level rep-
resentations within the same span are combined
to generate a span-level representation. Finally,
the span-level representations are merged with sub-
token-representations into a sentence-level repre-
sentation. In this way, the sentence-level represen-
tation is able to contain and maximize the utiliza-
tion of both sub-token-level and span-level infor-
mation.

Experiments are conducted on the GLUE bench-
mark (Wang et al., 2018), which includes many
NLU tasks, such as text classification, semantic
similarity, and natural language inference. Empir-
ical results demonstrate that Span Fine-tuning is
able to further improve the performance of differ-
ent PrLMs, including BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019b) and SpanBERT (Joshi
et al., 2019). The result of the experiments with
SpanBERT indicates that Span Fine-tuning lever-
ages span-level information differently compared
to PrLMs pre-trained with span-level information,
which shows the distinguishness of our approach.
It is also verified in ablation studies and analysis
that Span Fine-tuning is essential for further perfor-
mance improvement for PrLMs.

2 Related Work

2.1 Pre-trained language models

Learning reliable and broadly applicable word rep-
resentations has been an ongoing heated focus for
natural language processing community. Language
modeling objectives are proved to be effective for
distributed representation generation (Mnih and
Hinton, 2009). By generating deep contextualized
word representations, ELMo (Peters et al., 2018)
advances state of the art for several NLU tasks.
Leveraging Transformer (Vaswani et al., 2017),

BERT (Devlin et al., 2018) further advances the
field of transfer learning. Recent PrLMs are estab-
lished based on the various extensions of BERT, in-
cluding using GAN-style architecture (Clark et al.,
2020), applying a parameter sharing strategy (Lan
et al., 2019), and increasing the efficiency of pa-
rameters (Liu et al., 2019b).

2.2 Span-level pre-training methods
Previous works manifest that the introduction of
span-level information in pre-training phase can
improve PrLMs’ performance. In the first place,
BERT leverages the prediction of single masked
tokens as one of the pre-training objectives. Due
to the use of WordPiece embeddings (Wu et al.,
2016), BERT is able to segment sentences into sub-
word level tokens, so that the masked tokens are
at sub-token-level, e.g. "##ing". (Devlin et al.,
2018) shows that masking the whole word, rather
than only single tokens, can further enhance the
performance of BERT. Later, it is proved by (Sun
et al., 2019; Zhang et al., 2019a) that the mask-
ing of entities is also helpful for PrLMs. By ran-
domly masking adjoining spans in pre-training,
SpanBERT (Joshi et al., 2019) can generate better
representation for given texts. AMBERT (Zhang
and Li, 2020) achieves better performance than
its precursors in NLU tasks by incorporating both
sub-token-level and span-level tokenization in pre-
training. The upper mentioned studies all focus on
introducing span-level information in pre-training.
To the best of our knowledge, the introduction of
span-level information in fine-tuning is still a white
space to explore, which makes our approach a valu-
able attempt.

2.3 Integration of fine-grained representation
Different formats of downstream tasks require
sentence-level representations, such as natural lan-
guage inference (Bowman et al., 2015; Nangia
et al., 2017), semantic textual similarity (Cer et al.,
2017) and sentiment classification (Socher et al.,
2013). Besides directly pre-training the repre-
sentation of coarser granularity (Le and Mikolov,
2014; Logeswaran and Lee, 2018), a lot of meth-
ods have been explored to obtain a task-specific
sentence-level representation by integrating fine-
grained token-level representations(Conneau et al.,
2017). Kim (2014) shows that by applying a con-
volutional neural network (CNN) on top of pre-
trained word vectors, we can get a sentence-level
representation that is well adapted to classification
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Figure 1: Overview of the framework of our proposed method

tasks. Lin et al. (2017) leverage a self-attentive
module over hidden states of a BiLSTM to generate
sentence-level representations. Zhang et al. (2019b)
use a CNN layer to extract word-level representa-
tions form sub-word representations and combine
them with word-level semantic role representations.
Inspired by these methods, after a series of prelimi-
nary attempts, we choose a hierarchical CNN archi-
tecture to recombine fine-grained representations
to coarse-grained ones.

3 Methodology

Figure 1 demonstrates the overall framework of
Span Fine-tuning, which is essentially uses BERT
as a foundation and incorporates segmentation as
an auxiliary tool. The figure does not exhaustively
depict the details of BERT, given the model is rela-
tively popular and ubiquitous. Further information
on BERT is available in (Devlin et al., 2018). In
Span Fine-tuning, an input sentence is divided into
sub-word-level tokens and then sent to BERT to
generate sub-token-level representations. At the
same time, the input is segmented into spans based
on n-gram statistics. By combining the segmen-
tation information with sub-token-level represen-
tations generated by BERT, we divided the repre-

sentation into several spans. Then, the spans are
sent through a hierarchical CNN module to obtain a
span-level information enhanced representation. Fi-
nally, the sub-token-level representation of [CLS]
token generated by BERT and the span-level infor-
mation enhanced representation are concatenated
and form a final representation, which maximized
the value of both sub-token-level and span-level
information for NLU tasks.

3.1 Sentence Segmentation
Semantic role labeling (SRL) (Zhang et al., 2019b)
and dependency parsing (Zhou et al., 2019) have
been used as auxiliary tools for segmentation by
previous works. Nonetheless, these techniques de-
mand additional parsing procedures, and therefore
increase complexities for real application. In order
to obtain a simpler and more convenient segmen-
tation, base on frequency, we select meaningful
n-grams appeared in wikitext-103 dataset* to form
a pre-sampled dictionary.

We use the dictionary to match n-grams from
the head of each input sentence. n-grams with
greater lengths are prioritized, while unmatched
tokens remain the same. In this way, we are able to

*PMI method has also been tried to adjust our dictionary,
but the result is not competitive.
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a dog      is jumping     for a        frisbee     in the snow

a dog     is jumping      for a   frisbee   in the snow an older man      is     drinking     orange juice      at a restaurant

an older man      is     drinking     orange juice      at a restaurant

(a) (b)

the model   is intended to   give   managers  an overview of   the acquisition   process and   to help them   decrease  acquisition  risk

the model   is intended to   give managers    an overview of   the acquisition   process and   to help them   decrease  acquisition  risk

(c)

Figure 2: Segmentation Examples

obtain a specific segmentation of the input sentence.
Figure 2 demonstrates some examples of sentence
segmentation from the GLUE dataset.

3.2 Sentence Encoder Architecture

An input sentence X = {x1, . . . , xn} is given with
a length n. The sentence is firstly divided into
sub-word tokens (with a special token [CLS] at
the beginning) and converted to sub-token-level
representations E = {e1, . . . , em} (usually m is
larger than n) according to embeddings proposed
by (Wu et al., 2016). Then, the transformer en-
coder (BERT) captures the contextual information
for each token by self-attention and generates a se-
quence of sub-token-level contextual embeddings
T = {t1, . . . , tm}, in which t1 is the contextual
representation of special token [CLS]. Based on
the segmentation generated by the n-gram statistics,
the sub-token-level contextual representations are
combined into several spans {C1, . . . , Cr}, with r
as a hyperparameter indicating the max number of
spans for all processed sentences. Each Ci contains
several contextual sub-token-level representations
extracted from T dedoted as {ti1, ti2, ..., til}. l is an-
other hyperparameter representing the max number
of tokens for all the spans. A CNN-Maxpooling
module is applied to each Ci to get a span-level
representation ci:

cij = ReLU(W1

[
tij , t

i
j+1, . . . , t

i
j+k−1

]
+ b1),

ci = MaxPooling(ci1, . . . , c
i
r),

(1)

where W1 and b1 are trainable parameters and k
is the kernel size. Based on the span-level repre-
sentations {c1, . . . , cr}, another CNN-Maxpooling
module is applied to obtain a sentence-level repre-
sentation s with enhanced span-level information:

s′i = ReLU(W2 [ci, ci+1, . . . , ci+k−1] + b2),

s = MaxPooling(s′1, . . . , s
′
r),

(2)

Finally, we concatenate s with the contextual
sub-token-level representation t1 of special to-
ken [CLS] provided by BERT, and generate a
sentence-level representation s∗ that maximizes
the value of both sub-token-level and span-level
information for NLU tasks: s∗ = s � t1.

3.3 Tasks and Datasets
To evaluate Span Fine-tuning, experiments are con-
ducted on nine NLU benchmark datasets, including
text classification, natural language inference, se-
mantic similarity. Eight of which are available from
the GLUE benchmark (Wang et al., 2018). And the
rest one is SNLI (Bowman et al., 2015), a widely
accepted natural language inference dataset.

3.4 Pre-trained Language Model
We leverage the PyTorch implementation of BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019b)
and SpanBERT (Joshi et al., 2019) based on Hug-
gingFace’s codebase† (Wolf et al., 2019) as our
PrLMs and baselines.

4 Experiments

4.1 Set Up
We select all the n-grams with n ≤ 5, which occurs
more than ten times in the wikitext-103 dataset, to
form a dictionary. The pre-sampled dictionary, con-
taining more than 400 thousand n-grams, is used
to segment input sentences. During segmentation,
two hyperparameters are involved: r representing
the largest number of spans in a sentence, and l
indicating the largest number of tokens included in
a span. In order to maintain different dimensions
of features for each input sentence, padding and
tail are employed. We set r equals to 16, and based
on NLU tasks, choose l in {64,128} .

The fine-tuning procedure is as the same as
BERT’s. Adam is used as the optimizer. The initial
learning rate is in {1e-5,2e-5, 3e-5}, the warm-up
rate is 0.1, and the L2 weight decay is 0.01. The

†https://github.com/huggingface

https://github.com/huggingface
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Method CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B Avg Gain
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (F1) (pc) - -

In literature
BERTBASE 52.1 93.5 84.6/83.4 - 66.4 88.9 71.2 87.1 78.3
BERTLARGE 60.5 94.9 86.7/85.9 92.7 70.1 89.3 72.1 87.6 80.5
BERT-1seq‡ 63.5 94.8 88.0/87.4 93.0 72.1 91.2 72.1 89.0 83.5

1.0
SpanBERT 64.3 94.8 88.1/87.7 94.3 79.0 90.9 71.9 89.9 84.5

Our implementation
BERTBASE 51.4 92.1 84.4/83.5 90.3 67.1 88.3 71.3 85.1 79.3 1.1
BERTBASE + SF 55.1 93.6 84.8/84.3 90.6 69.6 88.7 71.9 86.5 80.4
BERTWWM 61.1 93.6 87.1/86.5 93.9 77.3 90.0 71.9 88.1 83.3 1.1
BERTWWM + SF 62.9 94.1 87.6/87.0 94.3 81.4 91.1 72.4 89.1 84.4

Table 1: Test sets performance on GLUE benchmark. All the results are obtained from (Liu et al., 2019a), (Radford
et al., 2018). For a simple demonstration, problematic WNLI set are excluded, and we do not show the accuracy
of the datasets have F1 scores. mc and pc denote the Matthews correlation and Pearson correlation respectively.

batch size is set in {16, 32, 48}. The maximum
number of epochs is set in {2,3,4,5} based on NLU
tasks. Input sentences are divided into subtokens
and converted to WordPiece embeddings, with a
maximum length in {128, 256}. The output size
of the CNN layer is the same as the hidden size of
PrLM, and the kernel size is set to 3.

4.2 Results with BERT as PrLM

Two released BERT (Devlin et al., 2018), BERT
Large Whole Word Masking and BERT Base, are
first used as pre-trained encoder and baselines for
Span Fine-tuning. Compared with BERT Large,
BERT Large Whole Word Masking reach a better
performance, since it uses whole-word masking
in pre-training phase. Therefore, we select BERT
Large Whole Word Masking as a stronger baseline.
The results indicate that Span Fine-tuning can max-
imize the contribution of span-level information,
even when compared to a stronger baseline.

Table 1 exhibits the results on the GLUE
datasets, showing that Span Fine-tuning can signif-
icantly improve the performance of PrLMs. Since
our approach leverages BERT as a foundation, and
undergoes the the same evaluation procedure, it
is evident that the performance gain is fully con-
tributed by the newly introduced Span Fine-tuning.

In order to test the statistical significance of the
results, we follow the procedure of (Zhang et al.,
2020). We use the McNemars test, this test is de-
signed for paired nominal observations, and it is
appropriate for binary classification tasks.The p-
value is defined as the probability of obtaining a
result equal to or more extreme than what was ob-

served under the null hypothesis. The smaller the
p-value, the higher the significance. A commonly
used level of reliability of the result is 95%, writ-
ten as p = 0.05. As shown in table 2, compared
with the baseline, for all the binary classification
tasks of GLUE benchmark, our method pass the
significance test.

CoLA SST-2 QNLI RTE MRPC QQP

p-value 0.005 0.012 0.023 0.009 0.008 0.031

Table 2: Results of McNemars tests for binary clas-
sification tasks of GLUE benchmark, tests are con-
ducted based on the results of best run of BERTBASE
and BERTBASE + SF.

Span Fine-tuning can reach the same perfor-
mance improvement as previous methods. As il-
lustrated in Table 1, on average, SpanBERT can
improve the result by one percentage point over the
baseline (BERT-1seq), while Span Fine-tuning is
able to achieve an improvement of 1.1 percentage
points over our baseline. However, as showed in
Table 3, Span Fine-tuning requires considerably
less time and computing resources compared to
the large-scale pre-training for span-level informa-
tion incorporation. When the Span Fine-tuning is
adopted, the extra parameters are only 3 percent
of the total parameters of the adopted PrLMs for
every downstream task, and introduce little extra
overhead.

Besides, Span Fine-tuning is more flexible and
adaptive compared to previous methods. Table

‡The baseline of SpanBert, a BERT pre-trained without
next sentence prediction object.
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Method Time Resource

Pre-train 32 days 32 Volta V100
Span Fine-tune 12 hours max 2 Titan RTX

Table 3: The comparison between incorporation of
span-level information in pre-training and Span Fine-
tuning .

1 shows that Span Fine-tuning is able to achieve
stronger results on all NLU tasks compared to the
baseline, whereas the results of SpanBERT in cer-
tain tasks, such as Quora Question Pairs and Mi-
crosoft Research Paraphrase Corpus, are worse
than its baseline. Since for spanBERT, the uti-
lization of span-level information is fixed for every
downstream task. Whereas in our method, an extra
module designed to incorporate span-level informa-
tion is trained during the fine-tuning, which can be
more dynamically adapted to different downstream
tasks.

Table 5 indicates that Span Fine-tuning also en-
hances the result of PrMLs on the SNLI benchmark.
The improvement achieved by Span Fine-tuning is
similar to published state-of-the-art accomplished
by SemBERT. However, compared to SemBERT,
Span Fine-tuning saves a lot more time and comput-
ing resources. Span Fine-tuning merely leverages
a pre-sampled dictionary to facilitate segmentation,
whereas SemBERT leverages a pre-trained seman-
tic role labeller, which brings extra complexities to
the whole segmentation process.

Furthermore, Span Fine-tuning is different from
SemBERT in terms of motivation, method and con-
tribution factors. The motivation of SemBERT is
to enhance PrLMs by incorporating explicit contex-
tual semantics, whereas the motivation of our work
is to let PrLMs leverage span-level information in
fine-tuning. When it comes to method, SemBERT
concatenate the original representations given by
BERT with representations of semantic role labels,
in comparison, our work directly leverages a seg-
mentation given by a pre-sampled dictionary to gen-
erate span-enhanced representation and requires no
pre-trained semantic role labeler. The gain of Sem-
BERT comes from semantic role labels while the
gain of our work comes from the specific segmen-
tation, which is very different.

It’s worth noticing that semantic role labeler can
also generate segmentation. However, semantic
role labeler will generate multiple segmentation
for sentence which has various predicate-argument

structures. Furthermore, such segmentation is
sometimes coarse-grained (with span more than
ten words), which is unpractical for our work.

4.3 Results with Stronger PrLMs

In addition to BERT, we also apply Span Fine-
tuning to stronger PrLMs, such as RoBERTa (Liu
et al., 2019b) and SpanBERT (Joshi et al., 2019),
which optimize BERT by enhancing pre-training
procedure and predicting text spans rather than sin-
gle tokens respectively.

Table 4 shows that Span Fine-tuning can
strengthen both RoBERTa and SpanBERT.
RoBERTa is a already very strong baseline, we
remarkably improve the performance of RoBERTa
on RTE by four percentage points. SpanBERT
already incorporated span-level information during
the pre-training, but the results still support that
Span Fine-tuning utilizes the span-level formation
and improves the performance of PrLMs in a
different dimension.

5 Analysis

5.1 Ablation Study

In order to determine the key factors in Span Fine-
tuning, a series of studies are conducted on the dev
sets of eight NLU tasks. BERTBASE is chosen as the
PrLM for the ablation studies. As shown in Table
6, three sets of ablation studies are performed. For
experiment BERTBASE + CNN, only a hierarchi-
cal CNN structure is applied in to evaluate whether
the improvement comes from the extra parameters.
To illustrate, we firstly apply two layers of CNN
over the token-level representations given by BERT.
Then, a max pooling operation is applied to get the
sentence-level representation. Finally, the sentence-
level representation and the ’CLS’ representation
of BERT is concatenated and sent to the classifier.
In this way, the parameters of BERTBASE + CNN
are the same as in our method. For experiment
BERTBASE + CNN + Random SF, random sen-
tence segmentation is applied to the experiment to
test if the proposed segmentation method of Span
Fine-tuning really functions in span-level informa-
tion incorporation. For experiment BERTBASE +
CNN + NLTK SF, we conduct the experiments us-
ing a pre-trained chunker from Natural Language
Toolkit to see whether the proposed segmentation
method of Span Fine-tuning can achieve further
improvements.
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Method CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B Avg.
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (acc) (pc) -

SpanBERTLARGE 64.3 94.8 88.1/87.7 94.3 79.0 90.9 89.5 89.9 86.5
SpanBERTLARGE + SF 65.9 95.1 88.4/88.1 94.3 83.3 92.1 90.9 90.1 87.6
RoBERTaLARGE 68.0 96.4 90.2/90.2 94.7 86.6 90.9 92.2 92.4 89.0
RoBERTaLARGE + SF 68.9 96.1 90.3/90.2 94.3 90.6 92.8 92.2 92.4 89.8

Table 4: Results on test sets of GLUE benchmark with stronger baseline, we average results from three different
random seeds.

Method Dev Test

BERTWWM 92.0 91.4
BERTWWM + SF 92.3 91.7
SemBERTWWM 92.2 91.9

Table 5: Accuracy on dev and test sets of SNLI.
SemBERTWWM (Zhang et al., 2019b) is the published
SoTA on SNLI.

method Avg Score

BERTBASE 82.6
BERTBASE + CNN 82.5
BERTBASE + Random SF§ 83.0
BERTBASE + NLTK SF¶ 83.7
BERTBASE + SF 84.2

Table 6: Ablation studied on dev sets of GLUE bench-
mark, we average results from three different random
seeds.

The results of the experiment BERTBASE +
CNN suggest that the improvement is unlikely to
come from the extra parameters, since it reduce the
overall performance by 0.1 percent. The experi-
ment BERTBASE + Random SF and BERTBASE +
NLTK SF indicate that the segmentation generated
by a pre-train chunker or even random segmenta-
tion can also achieve enhancement under the Span
Fine-tuning structure. However, a pre-trained chun-
ker demands additional part-of-speech parsing pro-
cess, while our segmentation method only relies on
a pre-sampled dictionary and saves a lot more time,
and at the same time, achieves greater improve-
ment. Our Span Fine-tuning is able to remarkably
enhance the result on all NLU tasks, raising aver-
age score by 1.6 percentage points. Overall, the

§Random SF represents Span Fine-tuning with randomly
segmented sentences.

¶NLTK SF represents Span Fine-tuning with segmentation
generated by an NLTK pre-trained chunker.

result of experiments indicate that the performance
improvement is primarily a result of our unique
segmentation method.

5.2 Encoder Architecture

(Conneau et al., 2017) mentions that the influence
of sentence encoder architectures on PrLM perfor-
mance varies a lot from case to case. (Toshniwal
et al., 2020) also suggests that different span repre-
sentations can affect NLPs tasks greatly.

Method Dev Test

CNN-Max 90.9 90.9
CNN-CNN 91.3 91.1
Attention||-Max 90.7 90.5
Attention-Attention 90.8 90.8

Table 7: Accuracy on dev and test sets of SNLI.
SemBERTWWM (Zhang et al., 2019b) is the published
SOTA on SNLI.

To evaluate the effectiveness of our encoder ar-
chitecture, we replace the component of the encod-
ing layer and the overall structure respectively. For
the component of the encoding layer, CNN (Kim,
2014) and the Self-attentive module (Lin et al.,
2017) are compared. For the overall structure, two
structures are considered: a single layer structure
with the max-pooling operation and a hierarchical
structure.

By matching every component of the encod-
ing layer with the overall structure, four differ-
ent encoder architectures are generated: CNN-
Maxpooling, CNN-CNN, Attention-Maxpooling,
Attention-Attention. Experiments are conducted
on SNLI dev and test sets. Table 7 suggests that
the hierarchical CNN (CNN-CNN) is most suitable
encoder architecture for us.

||Attention indicate the Self-attentive module (Lin et al.,
2017).



1977

5.3 Size of n-gram Dictionary

Since our segmentation method is based on a pre-
sampled dictionary, the size of dictionaries will
have a large impact on segmentation results. Figure
3 depicts how the average number of spans in the
sentences changed along with dictionary size in
CoLA and MRPC datasets. At the origin, where no
segmentation is applied, every token is considered
as a span. The number of spans drops significantly,
as the dictionary size grows and more n-grams are
matched and grouped together.
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Figure 3: Influence of dictionary size on the average
number of spans in the sentences

To evaluate the influence of dictionary size on
PrLM performance, experiments on the dev sets
of two NLU tasks are implemented: CoLA and
MRPC. To concentrate on the impact of segmenta-
tion and reduce the impacts from sub-token-level
representations provided by PrLM, the concate-
nation process is not applied to this experiment.
Rather, the span-level information enhanced rep-
resentations are directly sent to a dense layer to
generate prediction. As demonstrated in figure 4,
the incorporation of pre-sampled n-gram dictio-
nary generates a stronger performance compared
to random segmentation. Moreover, dictionaries of
medium sizes (20k to 200k) commonly result in
better performance. Such trend can be explained by
intuition, give dictionaries of small sizes are likely
to omit meaningful n-grams, whereas the ones of
large sizes tend to over-combine meaningless n-
grams.

Figure 4: The influence of the size of n-gram dictio-
nary

5.4 Span Fine-tuning for Token-Level Tasks

The upper mentioned experiments are conducted
on the GLUE benchmark, whose tasks are all at the
sentence level. Nevertheless, token-level represen-
tations are needed in many other NLU task, such as
name-entity recognition (NER). Our approach can
be applied to token-level tasks with simple modifi-
cation of encoder architecture (e.g. removing the
pooling layer of CNN module). Table 8 shows the
results of our approach on the CoNLL-2003 Named
Entity Recognition (NER) task (Tjong Kim Sang
and De Meulder, 2003) with BERT as our PrLM.

BERTBASE BERTBASE+SF BERTLARGE BERTLARGE+SF

Dev 91.7 92.1 92.3 92.5
Test 95.7 96.2 96.5 96.8

Table 8: F1 on dev and test sets of named entity recog-
nition from CoNLL-2003, we average results from
three different random seeds.

6 Conclusion

This paper proposes Span Fine-tuning that maxi-
mize the advantages of flexible span-level informa-
tion in fine-tuning with sub-token-level representa-
tions generated by PrLMs. Leveraging a reasonable
segmentation provided by a pre-sampled n-gram
dictionary, Span Fine-tuning can further enhance
the performance of PrLMs on various downstream
tasks. Compared with previous span pre-training
methods, our Span Fine-tuning remains competi-
tive for the following reasons:

Task-adaptive For methods that incorporate
span-level information in pre-training, the utiliza-
tion of span-level information is unlikely easily
adjusted for every downstream task as span pre-
training has been fixed after tremendous compu-
tational cost. In our method, the extra module
designed to incorporate span-level information is
trained during the fine-tuning, resulting in a more
dynamically adaptation to different downstream
tasks.

Flexible to PrLMs Our approach can be gener-
ally applied to various PrLMs including RoBERTa
and SpanBERT.

Novelty Our approach can further improve the
performance of PrLMs pre-trained with span-level
information (e.g. SpanBERT). Such result im-
plies that we our method utilizes the span-level
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information in a different manner comparing with
PrLMs pre-trained with span-level information,
which makes our method distinguished comparing
with previous works.
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