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Abstract

Inspired by Curriculum Learning, we propose
a consecutive (i.e., image-to-text-to-text) gen-
eration framework where we divide the prob-
lem of radiology report generation into two
steps. Contrary to generating the full radiology
report from the image at once, the model gen-
erates global concepts from the image in the
first step and then reforms them into finer and
coherent texts using a transformer architecture.
We follow the transformer-based sequence-to-
sequence paradigm at each step. We improve
upon the state-of-the-art on two benchmark
datasets.

1 Introduction

The analysis of X-rays in medical practice is the
most common and important task for radiologists.
With years of training, these experts learn to recog-
nize particular features in the image that are later
translated to a written report in a clinically appropri-
ate manner. This is a labor intensive and time con-
suming task, especially difficult for young trainees.
With increasing demand on imaging examinations,
the burden on radiologists has increased over time,
requiring the addition of the technologies to im-
prove their workflow.

Previous research on radiology report genera-
tion has mostly focused on image-to-text gener-
ation tasks. Jing et al. (2018) introduced a co-
attention mechanism to generate full paragraphs.
Lovelace and Mortazavi (2020) explored report
generation through transformers. More recently,
Zhang et al. (2020) used a preconstructed graph
embedding module on multiple disease findings to
assist the generation of reports. Finally, Chen et al.
(2020) proposed to generate radiology reports via
memory-driven transformer and showed that their
proposed approach outperforms previous models
with respect to both language generation metrics
and clinical evaluation. These systems have signifi-
cant potential in many clinical settings, including

improvement in workflow in radiology, clinical
decision support, and large-scale screening using
X-ray images.

In this work, we focus on generating reports
from chest X-ray images innovating with a double
staged transformer based architecture. Our contri-
butions in this paper can be summarized as follows:
(i) We propose to produce radiology reports via
a simple but effective progressive text generation
model by incorporating high-level concepts into
the generation process 1, (ii) We conduct extensive
experiments and the results show that our proposed
models outperforms the baselines and existing mod-
els, i.e., achieving a substantial +1.23% increase
in average over all language generation metrics in
IU X-RAY, and the increase of +3.2% F1 score
in MIMIC-CXR, against the best baseline R2GEN,
and (iii) We perform a qualitative analysis to fur-
ther demonstrate the quality and properties of the
generated reports.

2 Method

An essential challenge in the radiology report gen-
eration is modeling the clinical coherence across
the entire report. Contrary to generating the full ra-
diology report from the image at once, we propose
a consecutive (i.e., image-to-text-to-text) genera-
tion framework (inspired by Curriculum Learning
(Bengio et al., 2009) and the work of Tan et al.
(2020)). As shown in Figure 1, we divide the prob-
lem of radiology report generation into two steps.
In the first step, the model generates global con-
cepts from the image and then reforms them into
finer and coherent text using a transformer archi-
tecture. Each step follows the transformer based
sequence-to-sequence paradigm.

Model Architecture Instead of generating the
full report from an input radiology image, we frame

1Our code is available at https://github.com/
uzh-dqbm-cmi/ARGON

https://github.com/uzh-dqbm-cmi/ARGON
https://github.com/uzh-dqbm-cmi/ARGON
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Figure 1: Overview of our proposed framework

the generation process such as: X → C → Y ,
where X = {x1, x2, ..., xS}, xs ∈ Rd. X is a
radiology image and xs is a sequence of patch fea-
tures extracted from visual extractor and d is the
size of the feature vectors. C = {c1, c2, ..., cT },
ct ∈ V, and Y = {y1, y2, ..., yT ′}, yt′ ∈ V′, are
the generated tokens at intermediate and final steps,
respectively. T and T ′ are the length of generated
tokens and V, V′ are the vocabulary of all possi-
ble tokens at each step. Our framework can be
partitioned into three major components such as:
1) A visual backbone 2) An intermediate encoder-
decoder as a visual language model (ViLM) and
3) A final encoder-decoder as a language model
(LM).

Visual Backbone Given a set of radiology
images (I), the visual backbone extracts the vi-
sual features X and results in the source sequence
{x1, x2, ..., xs} for the subsequent visual language
model. The visual backbone can be formulated
based on pre-trained Convolutional Neural Net-
works (CNN), e,g., DenseNet (Huang et al., 2016),
VGG (Simonyan and Zisserman, 2015) or ResNet
(He et al., 2016). We find DenseNet to be more
effective in our generation task and therefore use it
as our based visual feature extractor.

Visual Language Model (ViLM) We adapt a
state-of-the-art image captioning model, Meshed-
Memory Transformer (M2 TR.), introduced by (Cor-
nia et al., 2020) for the intermediate step of our
architecture. M2 TR. is a transformer (Vaswani
et al., 2017) based model which presents two ad-
justments that leveraged the performance of the
model: Memory Augmented Encoder and Meshed
Decoder. Memory Augmented Encoder extends the
set of keys and values in the encoder with additional
“slots” to extract a priori information. The priori in-
formation is not based on the input; it is encoded in

learnable vectors, which are concatenated to keys
and values and can be directly updated via SGD.
Unlike the original decoder block in transformer,
which only performs a cross-attention between the
last encoding layer and the decoding layers, the M2

TR. presents a meshed connection with all encoding
layers. We refer the reader to Cornia et al. (2020)
for a detailed description of the Meshed-Memory
Transformer.

Given the visual language model structure, the
objective of the intermediate generation phase can
be formalized as :

pθ(C | I) =
T∏
t=1

pθ(ct | c<t, I)

where C at the intermediate step is the high-level
context that contains informative and important
tokens to serve as skeletons for the following en-
richment process. To train the ViLM , we maximize
the conditional log-likelihood

∑T
t=1 log pθ(C | I)

on the training data to find the optimized θ∗.

Language Model The third component of our
architecture is also based on the transformer as a
sequence-to-sequence model that follows the con-
ditional probability as:

pθ′(Y |C) =
T ′∏
t′

pθ′(yt′ |y<t′ | fθ′(C))

where fθ is an encoder that transforms the input
sequence (e.g., high-level context) into another rep-
resentation that are used by the language model
pθ at decoding step. We employed BART (Lewis
et al., 2020) as a pre-trained language model and
fine-tune on our target domain. BART includes
a BERT-like encoder and GPT2-like decoder. It
has an autoregressive decoder and can be directly
fine tuned for sequence generation tasks such as
paraphrasing and summarization. Similar to the
previous module, to train the LM, we maximize the
conditional likelihood

∑T ′

t′ log pθ′(Y | C) using
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Algorithm 1: Training the Progressive
Transformer-Based Generation of Radiol-
ogy Reports
Input: Radiology Reports R and Images I,

Pretrained CNNs Model
DensNet-121, Pretrained LM BART

1 Extract a high-level context C from
Radiology Reports R

2 Fine-tune ViLM and LM independently

Output: Fine-tuned ViLM and LM for
report generation from Images I in
a progressive manner

the training set.

Training Algorithm 1 shows the training steps
of our proposed architecture. We first extract a
high-level context C for each report in training
dataset (see Figure 1). To do so, we employed
MIRQI tools implemented by Zhang et al. (2020).
Each training report is processed with disease word
extraction, negation/uncertainty extraction, and at-
tributes extraction based on dependency graph pars-
ing. A similar method proposed in NegBio (Peng
et al., 2018) and CheXpert (Irvin et al., 2019) for
entity extraction and rule based negation detection
is adopted in MIRQI. Then, we construct indepen-
dent training data for each stage, i.e., fine-tuning
of the ViLM and LM. More concretely, given train-
ing pairs (I, C), we fine-tune ViLM. On the other
hand, the BART is fine-tuned by using training
pairs (C,R) in the LM stage. Having fine-tuned
the ViLM and LM, the model first generates the
intermediate context and subsequently generates
the full radiology report by adding finer-grained
details at the final stage.

3 Experiments

Datasets We examine our proposed framework
on two datasets as follows: i) IU X-RAY (Demner-
Fushman et al., 2015), a public radiology dataset
that contains 7,470 chest X-ray images and 3,955
radiology reports, each report is associated with
one frontal view chest X-ray image and optionally
one lateral view image, ii) MIMIC-CXR (Johnson
et al., 2019), a large publicly available database
of labeled chest radiographs that contains 473,057
chest X-ray images and 206,563 reports. In order to
compare our method with previous works, we use

the available split on two datasets (i.e., the IU X-

RAY and MIMIC-CXR splits available in Chen et al.
(2020).)2

Evaluation Metrics The evaluation of the mod-
els is preformed using general NLG metrics in-
cluding BLUE (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2011) and ROUGE-L (Lin,
2004). However, to address the shortcoming of the
conventional NLG metrics in medical abnormality
detection (Liu et al., 2019; Lovelace and Mortazavi,
2020; Chen et al., 2020), we also report clinical effi-
cacy (CE) metrics that compare CheXpert extracted
labels for the generated and reference reports3. To
alleviate randomness of the scores, the mean of five
different runs are reported.

Baselines We consider the following baselines
in our evaluation process: (i) TRANSFORMER: The
vanilla transformer is employed in the ViLM com-
ponent to generate radiology reports in a standard
manner, and (ii) M2 TR.: The Meshed-Memory
Transformer is used in the ViLM component to
generate text without progressive style.

Moreover, we compare our model with previ-
ous studies reported in Chen et al. (2020), e.g.,
ST (Vinyals et al., 2015), ATT2IN (Rennie et al.,
2017), ADAATT (Lu et al., 2017), TOPDOWN (Ander-
son et al., 2018), COATT (Jing et al., 2018), HRGR

(Li et al., 2018), CMAS-RL (Jing et al., 2019) and
R2GEN (Chen et al., 2020) (see Section A in ap-
pendix for more detail). For reproducibility, the
model configuration and training are described in
Section B of the Appendix.

4 Results and Discussion

Effect of progressive generation To show the
effectiveness of our model, we conduct experi-
ments with baseline models, including our pro-
posed model (i.e., M2 TR. PROGRESSIVE ) as re-
ported in Table 1. The results shows that M2 TR.

provides better performance than the vanilla trans-
former which confirms the validity of incorporating
memory matrices in the encoder and meshed con-
nectivity between encoding and decoding modules.
Our progressive model consistently outperforms
the standard and single-stage ViLMs by a large
margin on almost all metrics in both benchmark
datasets, which clearly highlights the benefits of

2https://github.com/cuhksz-nlp/R2Gen
3https://github.com/MIT-LCP/mimic-cxr/

tree/master/txt

https://github.com/cuhksz-nlp/R2Gen
https://github.com/MIT-LCP/mimic-cxr/tree/master/txt
https://github.com/MIT-LCP/mimic-cxr/tree/master/txt
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DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

IU
X-RAY

TRANSFORMER 0.388 0.246 0.176 0.133 0.163 0.340 - - -
M2 TR. 0.475 0.301 0.228 0.180 0.169 0.373 - - -
M2 TR. PROGRESSIVE 0.486 0.317 0.232 0.173 0.192 0.390 - - -

MIMIC
-CXR

TRANSFORMER 0.305 0.188 0.126 0.092 0.128 0.264 0.313 0.224 0.261
M2 TR. 0.361 0.221 0.146 0.101 0.139 0.266 0.324 0.241 0.276
M2 TR. PROGRESSIVE 0.378 0.232 0.154 0.107 0.145 0.272 0.240 0.428 0.308

Table 1: The performance of baseline and our progressive model on the test sets of IU X-RAY and MIMIC-CXR
datasets with respect to NLG and CE metrics. BL-n denotes BLEU score using up to n-grams; MTR and RG-L
denote METEOR and ROUGE-L, respectively. The performance of all models is averaged from five runs.

the progressive generation strategy. However the
precision of the progressive model is lower than
the baselines. We observe that the progressive gen-
eration produces long reports mostly by adding the
abnormality mentions in negation mode (e.g., No
evidence of pneumonia, There is no pneumotho-
rax ), therefore it increases the number of false
positives (FPs) in the CE metrics.

In Table 2, we compare our full model (i.e., M2

TR. PROGRESSIVE) with the previous works on the
same datasets. In general, memory based trans-
former methods offer significant improvements
across all metrics compared to the recurrent neu-
ral networks (RNNs) based architectures. This is
illustrated by comparing R2GEN, M2 TR. and our
full model with the other techniques (see also Table
1). Our model achieves competitive results com-
pare to R2GEN, i.e., +1.23% average on all NLG
metrics in IU X-RAY, +0.83% and +3.2% average
on all NLG metrics and F1 score, respectively, in
the MIMIC-CXR dataset. This indicates the benefits
of using the M2 TR. together with our progressive
strategy in the radiology reports generation task.
We hypothesise that the use of MIRQI in the inter-
mediate context generation provides informative
and high-quality plans which results in reasonable
descriptions for clinical abnormalities in the last
generation stage.

Analysis As a qualitative analysis to explain the
effectiveness of our progressive model, we examine
some of the generated reports with their references
from the MIMIC-CXR test dataset (see Figure 2 in
the Appendix). We show the text alignments be-
tween the reference text and generated one with
the same colors. It can be seen in the top two ex-
amples the progressive model is able to provide
reports aligned with the reference texts where the

baseline model fails to cover them, e.g., post me-
dian sternotomy, and mitral valve replacement, The
mediastinal contours, enlargement of the cardiac
silhouette, bilateral pleural effusions and compres-
sive atelectasis in the top two examples are not
generated by M2 TR.. Although our model shows
improvements in the NLG and CE metrics evalu-
ation, it still fails to generate clinically coherent
and error-free reports. For example, in the third
example of Figure 2, the mild pulmonary edema is
incorrect since the No new parenchymal opacities
in the reference implies negative pulmonary edema.
Furthermore, the sentence left plueral effusion in
the last example is not consistent with the previous
text bilateral pleural effusion. Additionally, the ex-
amples in Figure 2 contain a comparison of study
against to the previous study such as As compared
to the previous ... and In comparison with the study
... in the generated reports. This is a little surprising
since the model does not have any clue about the
previous report of a patient in its design. It can be
attributed to the fact that these template sentences
are more frequent in the training set. The examples
also show that the progressive model generates a
more comprehensive report compare to the base-
line.It includes occasionally the extra mentions of
medical terms compared to the reference text (e.g.,
There is no focal consolidation and No evidence
of pneumonia in examples 1 and 3, respectively),
which result in false-positive mention of observa-
tions in the CheXpert labeler of the CE metrics.

5 Conclusion

We propose to produce radiology report via a sim-
ple but effective progressive text generation model
by incorporating high-level concepts into the gen-
eration process. The experimental results show
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DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

IU
X-RAY

ST� 0.216 0.124 0.087 0.066 - 0.306 - - -
ATT2IN� 0.224 0.129 0.089 0.068 - 0.308 - - -
ADAATT� 0.220 0.127 0.089 0.068 - 0.308 - - -
COATT� 0.455 0.288 0.205 0.154 - 0.369 - - -
HRGR� 0.438 0.298 0.208 0.151 - 0.322 - - -
CMAS-RL� 0.464 0.301 0.210 0.154 - 0.362 - - -
R2GEN� 0.470 0.304 0.219 0.165 0.187 0.371 - - -

M2 TR. PROGRESSIVE 0.486 0.317 0.232 0.173 0.192 0.390 - - -

MIMIC
-CXR

ST⊕ 0.299 0.184 0.121 0.084 0.124 0.263 0.249 0.203 0.204
ATT2IN⊕ 0.325 0.203 0.136 0.096 0.134 0.276 0.322 0.239 0.249
ADAATT⊕ 0.299 0.185 0.124 0.088 0.118 0.266 0.268 0.186 0.181
TOPDOWN⊕ 0.317 0.195 0.130 0.092 0.128 0.267 0.320 0.231 0.238
R2GEN � 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276

M2 TR. PROGRESSIVE 0.378 0.232 0.154 0.107 0.145 0.272 0.240 0.428 0.308

Table 2: Comparisons of our full model with previous studies on the test sets of IU X-RAY and MIMIC-CXR with
respect to language generation (NLG) and clinical efficacy (CE) metrics. � refers to the result that is directly cited
from the original paper and ⊕ represents the replicated results reported on Chen et al. (2020).

that our proposed model outperforms the baselines
and a wide range of radiology report generation
methods, in terms of language generation and clini-
cal efficacy metrics. Further, the manual analysis
demonstrates the ability of the model to produce
long and more clinically coherent reports, however
there is still room for improvement.
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A Previous Models

• ST (Vinyals et al., 2015): The model is based
on a convolution neural network that encodes
an image into a compact representation, fol-
lowed by a recurrent neural network that gen-
erates a corresponding sentence. The model
is trained to maximize the likelihood of the
sentence given the image.

• ATT2IN (Rennie et al., 2017): The CNN-
RNN based model which rather than utilizing
a static, spatially pooled representation of the
image, it employs the attention model. The
attention model dynamically re-weight the in-
put spatial (CNN) features to focus on specific
regions of the image at each time step. The
model considers a modification of the archi-
tecture of the attention model for captioning
in Xu et al. (2015), and input the attention-
derived image feature only to the cell node of
the LSTM.

• ADAATT (Lu et al., 2017): It is an adaptive
attention encoder-decoder framework which
provides a fallback option to the decoder. At
each time step, the model decides whether to
attend to the image (and if so, to which re-
gions) or to the visual sentinel. The model
decides whether to attend to the image and
where, in order to extract meaningful informa-
tion for sequential word generation.

• TOPDOWN (Anderson et al., 2018): A com-
bined bottom-up and top-down visual atten-
tion mechanism (based on Faster R-CNN).
The bottom-up mechanism proposes image re-
gions, each with an associated feature vector,
while the top-down mechanism determines
feature weightings. The model enables atten-
tion to be calculated more naturally at the level
of objects and other salient regions.

• COATT (Jing et al., 2018): A multi-task
learning framework which jointly performs
the prediction of tags and the generation of
paragraphs. The model is based on a hierar-
chical LSTM model and incorporates a co-
attention mechanism to localize regions con-
taining abnormalities and generate narrations
for them.

• HRGR (Li et al., 2018): A Hybrid Retrieval-
Generation Reinforced Agent consists of a

CNN to extract visual features which is then
transformed into a context vector by an image
encoders. Then a sentence decoder (RNNs-
based with attention mechanism) recurrently
generates a sequence of hidden states which
represent sentence topics. A retrieval policy
module is employed to decide for each topic
state to either automatic generate a sentence,
or retrieve a specific template from a template
database.

• CMAS-RL (Jing et al., 2019): It is a LSTM
based framework for generating chest X-
ray imaging reports by exploiting the struc-
ture information in the reports. It explic-
itly models the between-section structure by
a two-stage framework, and implicitly cap-
tured the within-section structure with a Co-
operative Multi-Agent System (CMAS) com-
prising three agents: Planner (PL), Abnormal-
ity Writer (AW) and Normality Writer (NW).
The entire system was trained with REIN-
FORCE algorithm.

• R2GEN (Chen et al., 2020): The model
uses ResNet as a visual backbone and gen-
erate radiology reports with memory-driven
Transformer, where a relational memory is de-
signed to record key information of the genera-
tion process and a memory-driven conditional
layer normalization is applied to incorporating
the memory into the decoder of Transformer.
It obtained the state-of-the-art on two radiol-
ogy report datasets.

B Implementation detail

We adopt the codebase of R2GEN4 to implement
our proposed model. We use DenseNet121 (Huang
et al., 2016) pre-trained on CheXpert dataset with
14-class classification setting 5, as the visual back-
bone to extract visual features with the dimension
1024. For IU X-RAY, the two images are employed
to guarantee fair comparison with previous works.
In ViLM component, we use the M2 TR. (Cor-
nia et al., 2020) with 8 attention head, memory
size equal to 40, and 3 encoder layers and de-
coder layers. The model dimension is 512 with
the feed forward layers have a dimension of 2048.
In LM component, we adapt a pre-trained BART,

4https://github.com/cuhksz-nlp/R2Gen
5Available in https://nlp.stanford.edu/

ysmiura/ifcc/chexpert_auc14.dict.gz

https://github.com/cuhksz-nlp/R2Gen
https://nlp.stanford.edu/ysmiura/ifcc/chexpert_auc14.dict.gz
https://nlp.stanford.edu/ysmiura/ifcc/chexpert_auc14.dict.gz
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i.e., bart-base6 for generation of final reports.
The model is trained with the Adam optimiser with
batch size of 16. The learning rates are set to 5e−5
and 1e− 4 for the visual extractor and the remain-
ing parameters, respectively. The maximum length
in IU X-RAY is set to 60 and in MIMIC-CXR is set
to 100. Beam search with beam size of 3 and 5 is
used to decode texts during experiments with IU

X-RAY and MIMIC-CXR, respectively. The hyper-
parameters values are obtained by evaluation of
the model with the best BLEU-4 score using the
validation set of two benchmark datasets. We train
the model using NVIDIA GeForce RTX 2080 Ti
for 100 and 30 epochs with early stopping (pa-
tience=20) on IU X-RAY and MIMIC-CXR, respec-
tively.

6Available in https://huggingface.co/
facebook/bart-base

https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base
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Figure 2: Illustrations of reports from test dataset as REFERENCE, M2 TR. as a baseline model and M2 TR. PRO-
GRESSIVE as a proposed model for selected X-ray chest images. Different colors highlight different medical terms
and the detected abnormalities. The text alignments between the reference text and generated one are highlighted
with the same colors. Top two images are positive results, the bottom two ones are partial failure cases.


