@inproceedings{teng-chao-2021-argumentation-driven,
title = "Argumentation-Driven Evidence Association in Criminal Cases",
author = "Teng, Yefei and
Chao, WenHan",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.257",
doi = "10.18653/v1/2021.findings-emnlp.257",
pages = "2997--3001",
abstract = "Evidence association in criminal cases is dividing a set of judicial evidence into several non-overlapping subsets, improving the interpretability and legality of conviction. Observably, evidence divided into the same subset usually supports the same claim. Therefore, we propose an argumentation-driven supervised learning method to calculate the distance between evidence pairs for the following evidence association step in this paper. Experimental results on a real-world dataset demonstrate the effectiveness of our method.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="teng-chao-2021-argumentation-driven">
<titleInfo>
<title>Argumentation-Driven Evidence Association in Criminal Cases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yefei</namePart>
<namePart type="family">Teng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">WenHan</namePart>
<namePart type="family">Chao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Evidence association in criminal cases is dividing a set of judicial evidence into several non-overlapping subsets, improving the interpretability and legality of conviction. Observably, evidence divided into the same subset usually supports the same claim. Therefore, we propose an argumentation-driven supervised learning method to calculate the distance between evidence pairs for the following evidence association step in this paper. Experimental results on a real-world dataset demonstrate the effectiveness of our method.</abstract>
<identifier type="citekey">teng-chao-2021-argumentation-driven</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.257</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.257</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>2997</start>
<end>3001</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Argumentation-Driven Evidence Association in Criminal Cases
%A Teng, Yefei
%A Chao, WenHan
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F teng-chao-2021-argumentation-driven
%X Evidence association in criminal cases is dividing a set of judicial evidence into several non-overlapping subsets, improving the interpretability and legality of conviction. Observably, evidence divided into the same subset usually supports the same claim. Therefore, we propose an argumentation-driven supervised learning method to calculate the distance between evidence pairs for the following evidence association step in this paper. Experimental results on a real-world dataset demonstrate the effectiveness of our method.
%R 10.18653/v1/2021.findings-emnlp.257
%U https://aclanthology.org/2021.findings-emnlp.257
%U https://doi.org/10.18653/v1/2021.findings-emnlp.257
%P 2997-3001
Markdown (Informal)
[Argumentation-Driven Evidence Association in Criminal Cases](https://aclanthology.org/2021.findings-emnlp.257) (Teng & Chao, Findings 2021)
ACL