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Algorithm 1: Weight-Learning Algorithm
Input: Training data D , Meta-data set D̂ , batch size

n; m , learning rates �; � , max iterations T .
1 for t  0 to T � 1 do
2 f x; yg  SampleMiniBatch(D; n ).
3 f x ( meta) ; y( meta) g  SampleMiniBatch(D̂; m ).
4 ŵ ( t ) (� ( t ) )  

w ( t ) � � 1
n

P n
i =1 r w L student(w ( t ) ; � ( t ) )

5 � ( t +1)  
� ( t ) � � 1

m

P m
i =1 r � L meta(ŵ ( t ) (� ( t ) ))

6 w ( t +1)  
w ( t ) � � 1

n

P n
i =1 r w L student(w ( t ) ; � ( t +1) )

7 return Network parameters w ( T ) ; � ( T )

A Weight Learning Algorithm

Finding the optimal � � and w� requires two nested
loops; one gradient update of a weight learner re-
quires a trained student on the training set. Thus,
we adopt an online strategy following (Shu et al.,
2019), which updates the weight learner with only
one gradient update of the student. Algorithm 1
illustrates its learning process. First, we sample
mini batches from the training and meta-data sets,
respectively (lines 2 and 3). Then, we update the
student’s parameter along the descent direction of
the student’s loss on a mini-batch training data
(line 4). Note that the student’s parameter is param-
eterized by the weight learner’s parameter. With
the updated parameter, the weight leaner can be up-
dated by moving the current parameter �( t) along
the objective gradient of equation (8) on a mini-
batch meta data (line 5). After updating the weight-
learner, the student’s parameter can be updated on
a mini-batch training data (line 6).

B Observation of Teacher’s Predictions

Samples from multimodal datasets have different
information on each modality. Fig. 7 shows a
teacher model’s predictions for samples in Hateful-
Memes and MM-IMDB test sets. For each sample,
three probabilities are calculated: 1) predictions of
samples with both of its modalities, 2) predictions
of samples with just its text modality, and 3) pre-
dictions of samples with just its image modality.
As one can see for MM-IMDB there is a strong
correlation between multimodal predictions and
predictions from text modality, indicating the fact
that in MM-IMDB text is a dominant modality. On
the other hand, for Hateful-Memes dataset there
is no such a global pattern but one can observe
some correlations for individual instances. This
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Figure 7: Prediction probabilities of test samples
for different modalities. Black points correspond to
the predictions of samples with both modalities (orig-
inal input), red points do with image modality, and
blue points do with text modality. The samples are
ordered based on their multimodal output probabil-
ities. There is a strong correlation between multi-
modal predictions and predictions from text modality
in MM-IMDB, while there is no such a global pattern
in Hateful-Memes.
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Figure 8: A multimodal violating sample (Left). We
further replaced its image modality with a background
picture that makes it benign and examined models on
both examples (Right).

behavior is actually expected based on the way
Hateful-Memes is built to include unimodal con-
founders (Kiela et al., 2020). Following these ob-
servations we introduce four weighting schemes
for distillation losses and discuss each of them in
§4.

C Case Study

We demonstrate the motivation behind our work
through an example. Fig. 8 shows an example
of a multimodal sample from Hateful Memes test
dataset. The sample is violating based on both
modalities together, and all models correctly pre-
dict that. To further probe the models, we replace
the background image of the sample with a picture
that makes the label benign. On this artificially
generated sample we notice that only the teacher
and MSD model correctly predict benign, while
the other two models make wrong predictions (pre-
sumably by just looking at the text only).
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D Hyperparameters

The teacher model is a VisualBERT (Li et al.,
2019), and the student model is TinyBERT (Jiao
et al., 2020). We used the MMF library and pre-
trained checkpoints from it for VisualBERT1 and
used a pretrained checkpoint in TinyBERT2. Visu-
alBERT consists of 12 layers and a hidden size of
768, and has 109 million number of parameters,
while TinyBERT consists of 4 layers and a hid-
den size of 312, and has 14.5 million number of
parameters. For all experiments, we performed a
grid search to find the best hyperparameters. We
adopt the AdamW optimizer to train networks. We
use a linear learning rate schedule that drops to 0
at the end of training with warmup steps of 10%
maximum iterations.

Hateful-Memes. We performed a grid search over
learning rates (1e-5, 3e-5, 5e-5, 1e-4), and temper-
atures (1, 2, 4, 8), and, batch sizes (10, 20, 30, 40,
50, 60), and the weight learner’s learning rates (1e-
1, 1e-2, 1e-3, 1e-4). We set the maximum number
of iterations to 5000. The balance parameter λ be-
tween cross entropy and distillation is set among
(0.2, 0.4, 0.5, 0.6, 0.8).

MM-IMDB. For MM-IMDB experiments, we fol-
low a similar procedure, a grid search, to the
Hateful-Memes. The batch size is 20, tempera-
ture is 1, and the weight learner’s learning rate is
1e-4. We set the maximum number of iterations to
10000. The balance parameter λ is set to 0.5.

SNLI-VE. For Visual Entailment (SNLI-VE), the
batch size is 64, temperature is 4, the student
model’s learning rate is 1e-4, and the weight
learner’s learning rate is 1e-4. We set the maxi-
mum number of iterations to 60000. The balance
parameter λ is set to 0.6.

VQA2. For VQA2, the batch size is 120, tempera-
ture is 1, the student model’s learning rate is 1e-4,
and the weight learner’s learning rate is 1e-4. We
set the maximum number of iterations to 60000.
The balance parameter λ is set to 0.8.

E Learning Curve

The MSD approaches can also help with training
speed, measured by test metrics over training steps.
Fig 9 shows the evolution of accuracy on the test

1https://mmf.sh
2https://github.com/huawei-noah/

Pretrained-Language-Model/tree/master/
TinyBERT

Table 3: Dataset Statistics.

Stat. \ Data Hateful-
Memes

MM-
IMDB

SNLI-
VE VQA2

Type Binary
Multil-

abel
Multi-
class

Multi-
class

# Classes 2 23 3 3,129

# Examples 10,000 25,959 565,286 1,105,904

# Training 8,500 15,552 529,527 443,757
# Validation 500 2,608 17,858 214,354

# Test 1,000 7,799 17,901 447,793
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Figure 9: Test accuracy of a student on SNLI-
VE during training and comparison between knowl-
edge distillation (KD) and modality-specific distilla-
tion (MSD) with population-based weighting, instance-
wise weighting, and weight learning for weights.

set during training on the SNLI-VE dataset. When
we train the student with MSD, training progresses
faster than KD. Since the teacher provides two addi-
tional probabilities with each modality, the student
learns faster and the final performance is better
than KD. We observe a large performance increase
early in training with the weight-learning approach,
thus leading to the best accuracy. In this case, the
weight learning for sample weighting finds the op-
timal weights for each data instance, so the student
quickly learns from more important modality that
is vital for the predictions.
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