
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 3773–3783
November 7–11, 2021. ©2021 Association for Computational Linguistics

3773

Towards Realistic Single-Task Continuous Learning Research for NER

Justin Payan1∗, Yuval Merhav2, He Xie2, Satyapriya Krishna2,
Anil Ramakrishna2, Mukund Sridhar2, Rahul Gupta2

1University of Massachusetts Amherst, MA, USA
2Amazon Alexa AI, MA, USA

1jpayan@umass.edu
2{merhavy, hexie, satyapk, aniramak, harakere, gupra}@amazon.com

Abstract

There is an increasing interest in continuous
learning (CL), as data privacy is becoming a
priority for real-world machine learning appli-
cations. Meanwhile, there is still a lack of
academic NLP benchmarks that are applica-
ble for realistic CL settings, which is a major
challenge for the advancement of the field. In
this paper we discuss some of the unrealistic
data characteristics of public datasets, study
the challenges of realistic single-task contin-
uous learning as well as the effectiveness of
data rehearsal as a way to mitigate accuracy
loss. We construct a CL NER dataset from an
existing publicly available dataset and release
it along with the code to the research commu-
nity1.

1 Introduction

Data privacy is a hot topic in ML, gaining atten-
tion in both industry and academia (Papernot et al.,
2016; Perera et al., 2015). One of the topics of
interest is data retention, which can be improved
by training models incrementally (Wu et al., 2019).
An ideal training regime would involve continu-
ously updating a model on newly acquired data,
then deleting the data. Benchmarking CL strate-
gies today is still highly nonstandard in academic
research (Maltoni and Lomonaco, 2019).

One key difference between real-world and aca-
demic datasets is the dynamic nature of the for-
mer. Academic datasets are often static and contain
data that is annotated all at once based on fixed
annotation guidelines. When building real-world
applications, such data collection and annotation
workflow is often not realistic. Rather, an initial
dataset is created and then is evolved over time
based on usage pattern changes and business needs.
For example, new labels are added periodically,

∗Work completed while first author was an intern at Ama-
zon Alexa AI.

1https://github.com/justinpayan/
StackOverflowNER-NS

data distribution changes significantly due to sea-
sonality or other factors, annotation guidelines are
updated, etc. While such datasets exist in indus-
try, they are often confidential or proprietary and
cannot be shared with the research community.

Consequently, the academic CL research focus
has been mainly on the multi-task learning sce-
nario, where the same model is required to learn
a number of isolated tasks incrementally without
forgetting how to solve the previous ones. In this
work we tackle the single-task scenario using the
Named Entity Recognition (NER) task. There is
only one task, but it evolves over time due to data
distribution shift, introduction of new labels, or
other factors. Single-task is often considered to be
more difficult than multi-task (Kemker et al., 2018;
Kemker and Kanan, 2018; Maltoni and Lomonaco,
2019) and is also a common real-world scenario.

To the best of our knowledge, there are no public
NLP benchmarks specifically designed for single-
task CL. In order to study this problem we pick the
recent StackOverflowNER dataset (Tabassum et al.,
2020). The dataset authors’ motivation was study-
ing named entity recognition in the social com-
puter programming domain, not continuous learn-
ing. However, the characteristics of the dataset are
ideal for a study in CL. It spans roughly 10 years
(from September 2008 to March 2018) of question-
answer threads that are manually annotated with
close to 30 types of entities. The dataset is also very
diverse and has a large sample size – other public
NER datasets are too small or contain only a few
entity types. Finally, the manual annotation pro-
cess resembles that of industrial use cases, where
the labeling process might be subject to noise and
human error.

In order to simulate CL we split the data into
time-based episodes and train an NER model in-
crementally over 5 episodes. Our results show no
regression and limited forgetting. To present a
more realistic challenge, we propose a configurable

https://github.com/justinpayan/StackOverflowNER-NS
https://github.com/justinpayan/StackOverflowNER-NS


3774

0
200
400
600
800

1000
1200
1400
1600
1800

APPLIC
ATIO

N

CLASS_NAM
E

CODE_BLOCK

DATA_STRUCTURE

DATA_TYPE

DEVIC
E

FILE_NAM
E

FILE_TYPE

FUNCTIO
N_NAM

E

HTM
L_XM

L_TAG

LANGUAGE

LIB
RARY

LIB
RARY_CLASS

LIB
RARY_FUNCTIO

N

LIB
RARY_VARIA

BLE

OPERATIN
G_SYSTEM

OUTPUT_BLOCK

USER_IN
TERFA

CE_ELEM
ENT

VALUE

VARIA
BLE_NAM

E

VERSIO
N

CO
U

N
T

Ep 1 Ep 2 Ep 3 Ep 4 Ep 5

(a) Temporal

0
200
400
600
800

1000
1200
1400
1600
1800
2000

APPLIC
ATIO

N

CLASS_NAM
E

CODE_BLOCK

DATA_STRUCTURE

DATA_TYPE

DEVIC
E

FILE_NAM
E

FILE_TYPE

FUNCTIO
N_NAM

E

HTM
L_XM

L_TAG

LANGUAGE

LIB
RARY

LIB
RARY_CLASS

LIB
RARY_FUNCTIO

N

LIB
RARY_VARIA

BLE

OPERATIN
G_SYSTEM

OUTPUT_BLOCK

USER_IN
TERFA

CE_ELEM
ENT

VALUE

VARIA
BLE_NAM

E

VERSIO
N

CO
U

N
T

Ep 1 Ep 2 Ep 3 Ep 4 Ep 5

(b) Skewed

Figure 1: Entity type distribution across episodes comparing the temporal and skewed episodes. Each vertical bar
has the frequency for each of the 5 episodes. For readability we removed types with low counts in each episode.

distribution-based sampling of data inspired by our
experiences with a confidential industrial dataset.
We show that our sampled episodes can be used
to study the effectiveness of different single-task
CL strategies in the context of NER. The resulting
dataset is the main contribution of this work.

2 Continuous Learning

Strategies. The main focus in training deep learn-
ing models in CL fashion is prevention of catas-
trophic forgetting (Kirkpatrick et al., 2017). Neural
networks trained on new data tend to do poorly
on old data and to mitigate catastrophic forgetting
different strategies have been proposed, such as
specific architectures for CL (Lomonaco and Mal-
toni, 2017; Rusu et al., 2016), regularization tech-
niques (Kirkpatrick et al., 2017; Li and Hoiem,
2017), and data rehearsal/replay where small sub-
sets of old data (real or generated) is periodi-
cally supplied to the model during training on new
data (Sun et al., 2019; Shin et al., 2017). The latter
is considered a strong CL baseline (Maltoni and
Lomonaco, 2019) and thus we use this approach
in this study. We also compare against a variation
of the replay-based GDumb baseline (Prabhu et al.,
2020). GDumb collects examples into a memory
buffer with a limited budget size k, balancing the

distribution over labels by greedily sampling under-
represented label types and ejecting over-sampled
label types. The model trains on the buffer after all
tasks are seen.

Our CL model. Our model design is inspired
by LAMOL (Sun et al., 2019) and adapted for NER.
We employ a pre-trained GPT-2 language model
base (Radford et al., 2019), then 2 layers of bi-
LSTM with 768 dimensions in each direction, a
tanh non-linearity and linear transformation (1536
by number of labels), and a CRF layer to predict
labels. All parameters besides the GPT-2 base (pre-
trained on OpenAI’s WebText) are randomly ini-
tialized, and we train or finetune all parameters
during training. Training on all 5 episodes takes
less than 12 hours on an NVIDIA Tesla M40 GPU
for all experimental settings. We assume that all
entity types are known in advance so we do not
need to expand the label size in a later episode if
a new label is introduced. In our experiments, our
baseline is a model fine-tuned on all training data.
We compare the baseline to GDumb and two CL
strategies: training with and without data replay.

Data replay. For each episode (barring the first),
we set the size of replayed examples to be sampled
from previous episodes to 20% of the size of the
current episode’s training set. An equal number of



3775

replayed examples are sampled from each previous
episode. To apply GDumb to NER, we add ex-
amples containing under-represented entity types
to the buffer, and we eject examples which have
the maximum value for their least well-represented
entity type.

3 Experimental Setup

3.1 Time-Based Episodic Setup
Our first motivation is to investigate continual learn-
ing over time. We construct our continual learn-
ing datasets from StackOverflowNER, a dataset
of questions and answers on StackOverflow anno-
tated with 28 entity types (Tabassum et al., 2020).
We combine StackOverflowNER’s training and de-
velopment sets to construct a pool for sampling
training episodes, and we use the test set as a pool
for sampling test episodes. All data splits and
code are available at https://github.com/
justinpayan/StackOverflowNER-NS.

Episode Date Range Train / Test Size

1 8/4/2008 – 6/26/2012 2551 / 775
2 6/27/2012 – 3/13/2014 2444 / 665
3 3/14/2014 – 6/27/2015 2243 / 521
4 6/28/2015 – 10/1/2016 2450 / 496
5 10/2/2016 – 3/27/2018 2386 / 632

Table 1: Date boundaries for each episode.

We first split the StackOverflowNER data into
5 time-based episodes. The StackOverflowNER
dataset does not have timestamps, so we align their
annotated examples with posts in the StackOver-
flow data dump. We select date boundaries for each
episode to obtain roughly equal-sized training and
test sets. Table 1 lists the dates.

3.2 Results
Figure 1a shows the distribution of each entity type
across the 5 episodes. While some entity types are
more common than others, the frequency distribu-
tion is consistent across episodes. The percentage
of examples tagged with a particular entity type
does not change much across episodes and there
are no deletions or additions of new entity types
over time. Such data characteristics are not realistic
for a real-world application evolving over 10 years.

We train our model incrementally on the 5
episodes with and without data replay and com-
pare it to a baseline model that is trained on all

data at once in a non-CL fashion. Table 2 shows
the averaged F1 score over the 5 episodes’ test
data (comprehensive results can be found in Ap-
pendix A). Not surprisingly, training incrementally
performs on-par with training on all data at once,
meaning that if there is any catastrophic forget-
ting, it does not impact the test performance of
the model. As such, applying data replay that is
supposed to mitigate catastrophic forgetting has
no benefit and even results in a mild performance
degradation. Preliminary manual analysis suggests
that degredation stems from memorization of in-
frequent patterns sampled in the relatively small
replay set. Given these data characteristics and re-
sults, it is clear that the dataset, in this format, is
not proper for a comparison of CL strategies.

3.3 Skewed Class Distribution Setup

Motivated by our findings, we create an updated
version of the episodic dataset based on more real-
istic assumptions. The first assumption is of data
distribution shift and variance. Data distribution
shift is expected due to various factors such as
seasonality. A second factor is annotation cost.
When a model is doing well on specific types of
data/labels, there is no need to continue annotating
similar examples and labels. We modify the Stack-
Overflow dataset by sampling the distribution over
entity types from a Dirichlet distribution for each
episode. To simplify, we assume independence
between entity types, although entity types often
co-occur.

We first compute the distribution over entity
types in the training pool, and denote that with
α. We then sample distributions for the 5 train-
ing episodes, {Xtr

i }5i=1 ∼ Dir(cα) and the 5 test
episodes {Xte

i }5i=1 ∼ Dir(Xtr
i ). We set c = 5

but the parameter can be changed to increase or de-
crease variance. To sample the train (test) episodes,
we cycle through the episodes, each time selecting
an entity type from the episode’s distribution and
then selecting an example containing that entity
type from the train (test) pool without replacement.

In addition to modeling distribution shift,
we also introduce class incrementality. We
select 3 entity types that are relatively fre-
quent: CODE_BLOCK, DATA_STRUCTURE, and
USER_INTERFACE_ELEMENT. We simulate
the data shift by removing the CODE_BLOCK

entity in episode 3 and onward, adding the
DATA_STRUCTURE entity only in episodes 4 and 5,

https://github.com/justinpayan/StackOverflowNER-NS
https://github.com/justinpayan/StackOverflowNER-NS


3776

Overall CodeBlock DataStruct.

Baseline (non-CL) 51.36 25.67 75.27
Temporal CL w/o Replay 51.52 28.59 73.76

CL w/ Real Replay 51.12 26.41 72.82

Baseline (non-CL) 52.24 12.51 32.03
CL w/o Replay 42.61 0.00 32.60

Skewed CL w/ Replay 49.82 7.74 33.82
GDumb (500) 24.28± 0.98 6.81± 0.49 7.80± 4.25
GDumb (1000) 35.41± 0.90 8.10± 0.60 24.09± 1.38
GDumb (1500) 40.19± 0.67 8.82± 0.54 27.46± 1.52

Table 2: Overall and selected entity type F1 scores after training incrementally over all 5 episodes vs on all training
data at once. All scores are averaged over all 5 episodes’ test sets. We also compare against the GDumb baseline,
with memory budgets of 500, 1000, or 1500 examples. We run GDumb over 10 random orderings within each
episode, and report means and standard deviations.

and removing the USER_INTERFACE_ELEMENT

entity from episode 1. To achieve this, each time
we sample one of these entity types in a disallowed
episode, we put that sample back into the pool.

3.4 Results

Figure 1b shows the distribution of each entity type
across the 5 skewed episodes. In comparison to
Figure 1a, one can see the increased variance of the
distribution across episodes. Appendix B shows
further comparisons between the skewed and tem-
poral settings. We find the degree of variance to be
similar to that of our confidential industrial NER
dataset. Following the previous model training pro-
cedure, we train our model incrementally on the
5 skewed episodes with and without data replay
and compare it to a baseline model that is trained
on all data at once in a non-CL fashion. Table 2
shows the averaged F1 score over the 5 episodes’
test data. Contrary to the previous setup, we see
that the non-CL baseline heavily outperforms CL
without replay. Data replay helps, but there is still
a gap in performance. Even with a buffer size of
1500, GDumb greatly underperforms even the con-
tinual learning setup without replay. As GDumb is
a strong baseline, this suggests the setting is quite
difficult.

We can also see the impact of excluding
CODE_BLOCK from episode 3 onward. The
model completely stops predicting it in the no
replay case. The CL models also struggle with
DATA_STRUCTURE, perhaps because the final
model learns a grossly inflated probability for that
tag while the baseline sees the training examples in

a consistently balanced fashion.
We find that the CL models suffer from sub-

tler distribution shift errors too. For example, we
see forgetting of common named entities. Episode
1 includes many instances with the APPLICA-
TION “Android Studio,” while Episode 5 only refer-
ences the OPERATING_SYSTEM “Android.” Thus
the final CL models classify “Android” as OPER-
ATING_SYSTEM and “Studio” as APPLICATION.
More sophisticated replay techniques could address
such issues by reducing distribution shift or replay-
ing representatives for common entities/phrases.

3.5 Forgetting Over Time

Figure 2a shows how the final model (trained on all
data) in each experiment performs on each of the
train episodes with the skewed distribution. The
figure shows that the CL approaches suffer from
catastrophic forgetting compared to the non-CL
baseline, with no replay performing worse, as ex-
pected. While the performance of the baseline
model is consistent over the train episodes, the CL
models’ performance degrades on the earlier train-
ing episodes. While data replay helps, the gap is
still large which leaves room for future work. The
same plot for the temporal data splits is shown in
Figure 2c. Forgetting still occurs in this case, but
at a lower rate.

We also demonstrate the forgetting on the test
sets in Figures 2b and 2d, where we see little im-
pact of forgetting for the temporal setting compared
to the skewed setting. The baseline’s lower perfor-
mance on skewed episodes 1, 2, and 3 stems from
the removal of USER_INTERFACE_ELEMENT



3777

(a) Skewed Train (b) Skewed Test

(c) Temporal Train (d) Temporal Test

Figure 2: Overall F1 score evaluated on each of the 5 episodes’ train or test sets, for both skewed and tempo-
ral settings. All models evaluated here are trained on data from all episodes, where the CL models are trained
incrementally, starting with episode 1 and finishing with episode 5.

from test episode 1 and DATA_STRUCTURE from
test episodes 1, 2, and 3. The baseline can predict
these entity types with relatively high accuracy, and
they are fairly common. When they are removed,
the baseline model loses the boost in overall F1
these types provide. Overall, we see higher forget-
ting when evaluating the CL approaches on train
than on test, which can be explained by overfitting
to the most recent episodes during training.

In the future we would like to explore hyper-
parameter tuning which could further reduce for-
getting, and apply privacy preserving techniques
such as generative replay (Sun et al., 2019). Es-
tablishing more advanced benchmarks using recent
CL techniques or creating similar episodic splits
for other NLP tasks would also be of interest.

4 Conclusions

We demonstrate that even in an academic dataset
spanning a decade, some important characteristics

of applied single-task continual learning settings,
such as data shift and label imbalance, are missing.
We modify and release a dataset that contains some
of these realistic challenges, and we establish a
data replay baseline. Although the ability to access
and publish statistics for real industrial datasets is
limited due to privacy and business concerns, we
find that our dataset exhibits many important simi-
larities to such datasets. Our method for producing
the dataset is configurable and can be used to build
different degrees of data variance to support differ-
ent use cases. Although our dataset is a useful first
step towards more realistic single-task continual
learning, this work highlights the need for a public
benchmark with truly continuous annotation.

Acknowledgements

We are grateful to Emre Barut for helpful feedback
on drafts of this paper.



3778

References
Ronald Kemker and Christopher Kanan. 2018. Fear-

net: Brain-inspired model for incremental learning.
In International Conference on Learning Represen-
tations.

Ronald Kemker, Marc McClure, Angelina Abitino,
Tyler Hayes, and Christopher Kanan. 2018. Mea-
suring catastrophic forgetting in neural networks. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 32.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Zhizhong Li and Derek Hoiem. 2017. Learning with-
out forgetting. IEEE transactions on pattern analy-
sis and machine intelligence, 40(12):2935–2947.

Vincenzo Lomonaco and Davide Maltoni. 2017.
Core50: a new dataset and benchmark for continu-
ous object recognition. In Proceedings of the 1st An-
nual Conference on Robot Learning, volume 78 of
Proceedings of Machine Learning Research, pages
17–26. PMLR.

Davide Maltoni and Vincenzo Lomonaco. 2019. Con-
tinuous learning in single-incremental-task scenar-
ios. Neural Networks, 116:56–73.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha,
and Michael Wellman. 2016. Towards the science
of security and privacy in machine learning. arXiv
preprint arXiv:1611.03814.

Charith Perera, Rajiv Ranjan, Lizhe Wang, Samee U
Khan, and Albert Y Zomaya. 2015. Big data pri-
vacy in the internet of things era. IT Professional,
17(3):32–39.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania.
2020. Gdumb: A simple approach that questions our
progress in continual learning. In European confer-
ence on computer vision, pages 524–540. Springer.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. 2017. Continual learning with deep generative
replay. In Advances in neural information process-
ing systems, pages 2990–2999.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee.
2019. Lamol: Language modeling for lifelong lan-
guage learning. In International Conference on
Learning Representations.

Jeniya Tabassum, Mounica Maddela, Wei Xu, and Alan
Ritter. 2020. Code and named entity recognition in
StackOverflow. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4913–4926, Online. Association for
Computational Linguistics.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng
Ye, Zicheng Liu, Yandong Guo, and Yun Fu. 2019.
Large scale incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 374–382.

http://proceedings.mlr.press/v78/lomonaco17a.html
http://proceedings.mlr.press/v78/lomonaco17a.html
https://doi.org/10.18653/v1/2020.acl-main.443
https://doi.org/10.18653/v1/2020.acl-main.443


3779

A Comprehensive Results

We include full results for all entity types, for both
the temporal data split and the skewed data split.
The full results for the temporal data split are in-
cluded in Table 3, and the full results for the skewed
data split are included in Table 4.

B Diachronicity of Temporal and Skewed

We include some additional demonstrations of the
differences between the temporal and skewed set-
tings. In Table 5, we show the top five entity types
for all episodes’ train and test for both settings. Al-
though there is some variation across episodes for
the temporal setting, the variation is stronger for
the skewed setting.

We demonstrate a few examples of the
CODE_BLOCK, DATA_STRUCTURE, and
USER_INTERFACE_ELEMENT types in Ta-
ble 6. Recall that in the skewed data, we
remove the CODE_BLOCK entity in episode
3 and onward, add the DATA_STRUCTURE

entity only in episodes 4 and 5, and remove
the USER_INTERFACE_ELEMENT entity from
episode 1. This behavior impacts the top five
entities, as Table 5 makes apparent.



3780

Entity Type
Baseline
(non-CL)

CL w/o
Replay

CL w/
Real Replay

Avg. Count

Overall 51.36 51.52 51.12 777.60
Algorithm 24.00 19.64 21.82 0.00

Application 57.94 57.76 58.36 2.80
ClassName 25.38 18.89 18.33 80.00
CodeBlock 25.67 28.59 26.41 25.80

DataStructure 75.27 73.76 72.82 59.80
DataType 67.52 70.24 70.81 48.00

Device 59.38 60.24 58.99 21.60
ErrorName 3.64 3.64 14.16 10.60
FileName 62.31 64.06 60.01 3.60
FileType 69.82 66.28 77.19 32.60

FunctionName 12.25 4.86 9.71 21.60
HTMLXMLTag 42.32 41.51 40.96 9.20

KeyboardIP 1.74 9.78 1.67 10.40
Language 75.41 74.09 70.75 7.00
Library 53.97 53.28 47.46 35.40

LibraryClass 47.55 48.00 47.06 50.20
LibraryFunction 44.69 48.43 47.20 72.80
LibraryVariable 18.58 10.79 21.57 43.00

License 0.00 0.00 0.00 21.80
OperatingSystem 82.46 79.15 82.85 0.00

Organization 10.00 53.33 43.33 12.20
OutputBlock 75.20 68.71 67.14 1.80

UserInterfaceElement 56.43 56.96 56.67 10.80
UserName 35.83 35.69 32.21 69.40

Value 45.68 44.88 34.68 4.60
VariableName 28.44 28.81 27.53 43.00

Version 72.05 72.26 72.74 53.00
Website 25.99 22.29 28.00 21.20

Table 3: F1 scores by type after training incrementally over all 5 temporal episodes vs on all training data at once.
Scores are averaged over all 5 episodes’ test sets. We also denote the average count of each entity type in all 5 test
episodes.



3781

Entity Type
Baseline
(non-CL)

CL w/o
Replay

CL w/
Real Replay

GDumb
(1500)

Avg. Count

Overall 52.24 42.61 49.82 40.19± 0.67 750.40
Algorithm 10.00 14.44 28.33 32.43± 4.17 0.00

Application 55.93 53.01 55.68 47.23± 1.33 3.20
ClassName 19.84 5.24 8.21 21.17± 1.94 75.40
CodeBlock 12.51 0.00 7.74 8.82± 0.54 25.60

DataStructure 32.03 32.60 33.82 27.46± 1.52 47.20
DataType 72.45 67.24 68.77 63.53± 3.89 45.60

Device 53.32 47.39 47.21 45.28± 5.18 21.20
ErrorName 0.00 0.00 10.00 4.39± 2.61 10.60
FileName 54.79 6.17 46.81 39.09± 3.88 3.60
FileType 55.95 38.51 55.10 43.37± 5.23 32.60

FunctionName 26.16 5.34 8.58 11.23± 2.03 25.80
HTMLXMLTag 40.25 27.98 41.61 33.55± 3.70 9.20

KeyboardIP 8.00 5.71 13.33 8.31± 3.39 10.40
Language 69.11 67.59 67.83 57.26± 1.21 7.00
Library 55.35 48.26 55.43 40.70± 2.57 35.60

LibraryClass 48.52 42.13 45.70 36.97± 2.20 51.40
LibraryFunction 44.95 34.87 44.49 32.91± 3.64 75.40
LibraryVariable 23.33 7.99 3.12 6.21± 1.99 41.40

License 0.00 0.00 0.00 0.00± 0.00 22.40
OperatingSystem 79.74 60.45 65.81 64.81± 3.93 0.00

Organization 13.33 20.00 20.00 21.76± 4.62 13.20
OutputBlock 63.07 0.00 63.78 59.16± 6.16 2.00

UserInterfaceElement 44.94 40.81 43.25 34.68± 2.02 10.60
UserName 30.73 39.63 36.00 28.48± 4.81 54.00

Value 56.27 45.75 46.19 38.92± 2.61 4.60
VariableName 25.87 26.05 26.35 18.83± 3.00 42.80

Version 77.89 70.54 77.41 73.98± 3.18 51.60
Website 36.66 27.81 49.53 35.05± 4.63 22.20

Table 4: F1 scores by type after training incrementally over all 5 skewed episodes vs on all training data at once.
Scores are averaged over all 5 episodes’ test sets. We also include results for GDumb with memory budget of 1500
examples, averaged over 10 random initializations. We also denote the average count of each entity type in all 5
test episodes.



3782

Ep. 1 Ep. 2 Ep. 3 Ep. 4 Ep. 5

Application LibraryClass Application CodeBlock Application

Temporal LibraryClass Application LibraryClass LibraryClass UserInterfaceElem.

Train UserInterfaceElem. UserInterfaceElem. UserInterfaceElem. Application LibraryClass

Library VariableName VariableName VariableName Library

CodeBlock Value Value Value CodeBlock

UserInterfaceElem. UserInterfaceElem. LibraryClass LibraryClass Application

Temporal Application LibraryClass Value Application CodeBlock

Test LibraryClass Application CodeBlock Library VariableName

VariableName LibraryFunction VariableName CodeBlock LibraryFunction

Library LibraryVariable DataStructure UserInterfaceElem. Library

CodeBlock LibraryClass UserInterfaceElem. Value FileType

Skewed Application Library LibraryFunction DataStructure DataStructure

Train Library Language Language Application VariableName

LibraryClass Application VariableName FileName Application

FileName UserInterfaceElem. ClassName VariableName OperatingSystem

CodeBlock UserInterfaceElem. VariableName DataStructure LibraryClass

Skewed Value Language UserInterfaceElem. Application DataStructure

Test Application CodeBlock Application LibraryClass VariableName

Library Application ClassName LibraryFunction Library

LibraryClass FileType LibraryClass UserInterfaceElem. FileName

Table 5: Top five entity types (in order) for each episode of temporal/skewed train/test splits.



3783

Instead, start a command prompt (Application) and
" cd (Code_Block) " to where your jar (File_Type) file is.

CODE_BLOCK
Add rm -r (Code_Block) to remove the

file hierarchy rooted in each file argument.

rm /path/to/directory/ * (Code_Block)

Allocate an array (Data_Structure) of
pointers (Data_Type) to chars (Data_Type)

DATA_STRUCTURE

where keywords (Variable_Name) is the
list (Data_Structure) of strings (Data_Type)

so we can parse and find the correct item,
and session (Variable_Name) is the

a new session (Library_Class)
from the requests (Library) module.

I need to get the 14 days average
Col 1 (Variable_Name) and update Col 2 (Variable_Name)

of the same table (Data_Structure).

There will be a class method,
which opens a new tab (User_Interface_Element),

renders some HTML (Language),
and returns the PDF (File_Type) data,

and closes the tab (User_Interface_Element).

USER_INTERFACE_ELEMENT

I’m trying to create a responsive effect,
where I hide a column (User_Interface_Element)

when my screen (User_Interface_Element)
is 960 (Value) or lower.

But in iOS (Operating_System) 10 (Version),
photos (User_Interface_Element) not appearing until I tap on

cell (User_Interface_Element) that holds
collection view (Library_Class).

Table 6: Examples containing the CODE_BLOCK, DATA_STRUCTURE, and USER_INTERFACE_ELEMENT types.
We remove all examples with these types in different episodes to simulate class incrementality in the skewed
dataset. All entities are bolded with the entity type in parentheses following the entity.


