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Abstract

Emotion and empathy are examples of human
qualities lacking in many human-machine in-
teractions. The goal of our work is to gen-
erate engaging dialogue grounded in a user-
shared image with increased emotion and em-
pathy while minimizing socially inappropriate
or offensive outputs. We release the Neural
Image Commenting with Empathy (NICE)
dataset consisting of almost two million im-
ages and the corresponding human-generated
comments, a set of human annotations, and
baseline performance on a range of models. In-
stead of relying on manually labeled emotions,
we also use automatically generated linguis-
tic representations as a source of weakly su-
pervised labels. Based on these annotations,
we define two different tasks for the NICE
dataset. Then, we provide a novel pre-training
model - Modeling Affect Generation for Image
Comments (MAGIC) - which aims to generate
comments for images, conditioned on linguis-
tic representations that capture style and affect,
and to help generate more empathetic, emo-
tional, engaging and socially appropriate com-
ments. Using this model we achieve state-of-
the-art performance on one of our NICE tasks.
The experiments show that the approach can
generate more human-like and engaging image
comments.

1 Introduction

Recent progress in the field of natural language pro-
cessing (NLP) and computer vision (CV) has led to
considerable advances in the domains of image cap-
tioning, visual question answering, visual dialog
and visual storytelling (Mao et al., 2015; Vinyals
et al., 2015; Devlin et al., 2015; Chen and Zitnick,
2015; Donahue et al., 2015; Karpathy and Fei-Fei,
2015; Kiros et al., 2014a,b; Gao et al., 2019; Shum
et al., 2018). Most image captioning tasks focus on
generating literal descriptions of content either di-
rectly or in the form of searching or understanding.

Figure 1: We present a dataset-NICE and a novel pre-
training model-MAGIC for generating comments for
user shared images. There are two examples for two
NICE dataset Settings. In NICE-Setting I: In contrast
to traditional image-captioning and image-grounded di-
alogue tasks, we focus on synthesizing content that is
empathetic, emotional and engaging. NICE-Setting II:
The second setting aims to generate dialogue-style com-
ments based on a comment topic and affect features.

Despite remarkable progress, developing intelli-
gent dialogue agents that are capable of engaging
in socially appropriate and empathetic conversa-
tions with humans is still very challenging. Fig. 1
shows the examples of two images with comment
threads for two NICE-Settings. The caption for the
first image generated by a captioning model of the
NICE-Setting I is “Some houses are at the foot of
a mountain”. While this somewhat faithfully de-
scribes the image, imagine you posted the picture
on social media and someone responded with that
statement, would that spark an engaging conversa-
tion or feel like an empathetic response? Probably
not. A conversation is grounded not only in visible
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objects (e.g., houses and mountains) but also in
events, actions and emotions (e.g., amazement at
the grandeur of the mountain or a desire to climb
it). Emotions are important in meaningful conver-
sations and especially in forming emotional con-
nections. Generating emotional comments would
imitate human-like behavior, which is essential to
human-machine interaction and conversation.

In this work, we present the Neural Image Com-
menting with Empathy (NICE) dataset with two
task settings, and design a dialogue system that
is capable of commenting on images in an emo-
tional and engaging manner. To create a holistic
measure of the performance for image commenting
systems, we selected five dimensions that capture
different conversational qualities: empathy, emo-
tion, engagement, social appropriateness and rel-
evance to the image-commenting pairs. We make
the assumption that it is desirable for automatically
generated dialogue to score well across all of these
measures. Emotion and empathy in comments are
specified. Emotion here is defined as the use of
language that refers to, or reflects, affect and is a re-
sponse to a specific stimulus (in this case the image
and/or other comments). This is differentiated from
mood which is affect not related to a specific stimu-
lus but capturing a longer lasting feeling that might
influence a whole conversation. Empathy is defined
as the ability to understand and share the feelings
of another. We believe that this task will benefit
various research fields such as vision-language and
human-machine interaction.

To summarize, the core contributions of this pa-
per are: 1) We collect and release a large dataset1,
NICE, which contains almost two million images
and more than seven million groups of comment
dialogue conversation. 2) We define two different
tasks on the two NICE dataset settings including
a sizable manually and automatically annotated
portion. 3) We provide a benchmark results using
established metrics (e.g., BLEU, CIDEr) and via
human judgements of empathy, emotionality, en-
gagement, social appropriateness and relevance. 4)
We also introduce a novel pre-training approach,
MAGIC, to simulate human commenting on NICE
dataset, which aims to generate targeted comments
on a given image weakly supervised by affect fea-

1Users can access code and to download the dataset at
our official website: https://nicedataset.github.
io/. Use of the code and dataset are governed by an End User
License Agreement (EULA) to avoid any potential violation
of rights or terms of service.

tures. Experiments show that MAGIC outperforms
baseline methods on the NICE-Setting II.

2 Related Work

With the recent advances in deep learning, a grow-
ing number of researchers are interested in study-
ing vision and language jointly. Vision-language
understanding has become one of the key compo-
nents of conversational agents, such as Cortana
(Microsoft, 2014). A great deal of focus has been
paid to image captioning (Lin et al., 2014; Sharma
et al., 2018a; Young et al., 2014), which typically
focuses on literal descriptions of image content.
However, in social conversations, people usually
engage with others using language with emotions,
opinions and subjectivity. For example, image com-
menting on human-machine interaction system has
rich stylistic features. In this paper, we introduce
the image comment generation task, where the aim
is to build models that produce more engaging com-
ments grounded in visual images. Specifically, we
present a pre-training model for this task.

There are several pre-trained models that address
various tasks across the language and vision space.
Large-scale pre-trained models have achieved state-
of-art results on many natural language processing
and generation tasks (Peters et al., 2018; Devlin
et al., 2018; Yang et al., 2019; Liu et al., 2019;
Radford et al., 2019). Pre-trained models learn rep-
resentations using tasks such as predicting words
based on their context. GPT-2 and CTRL are exam-
ples of language generation models that leverage
pre-training.

We use a well validated linguistic style repre-
sentation to control the comment generation. We
extract affect features for auto-labeling which are
used to learn a control input related to word cate-
gories. Some researches have also combined vision
and language features in pre-trained models for var-
ious downstream vision-language tasks (Lu et al.,
2019; Tan and Bansal, 2019; Zhou et al., 2019;
Chen et al., 2019; Alberti et al., 2019; Li et al.,
2020, 2019). One of the closest pre-trained gen-
eration models that compare with our work is the
unified vision language pre-training (VLP) model.
However, VLP focuses on generating image cap-
tions and lacks the ability to generate expressive,
stylistic responses. To alleviate this problem, we
propose our MAGIC pre-training model to fill this
gap and the proposed Image Commenting task of-
fers a more natural setting for generating and evalu-

https://nicedataset.github.io/
https://nicedataset.github.io/
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(a) NICE (b) MS-COCO

Figure 2: Frequency of the top 40 words in the (a)
NICE and (b) COCO datasets. The radius reflects the
frequency of the corresponding word (larger radius =
higher the frequency).

ating comment dialogue with affection about visual
content.

3 NICE Dataset

3.1 Dataset Construction
The NICE dataset consists of over 2M images, and
7M image-comment pairs (English) split into train-
ing, validation, and testing sets. In this section, we
first describe how the dataset was collected, and
then present some of its unique characteristics.

Our goal is to simulate natural comments from
humans, which requires a large volume of data.
Therefore, we scraped 10 million image-comment
pairs from website. Each thread was required to
start with an image and at least one comment.
We applied filters to both the images and com-
ments to remove sensitive content such as adult or
pornographic content, racy and gory content, non-
English language, ethnic-religious content, and
some sensitive content (including people’s name,
documents invoices, bills, financial reports) or
other potentially offensive or contentious mate-
rial (including inappropriate references to violence,
crime and illegal substances). This filtering was
performed with several open-domain API. For ex-
ample, we used the “Microsoft Adult Filtering API”
(Microsoft, 2019) to remove adult, racy and gory
images, we use the “Detecting image types API”
(Microsoft, 2018) to remove clip art and line draw-
ings, we use the “Optical Character Recognition
(OCR) API” (Microsoft, 2020) to remove printed
or handwritten text from the images, such as photos
of license plates or containers with serial numbers,
as well as from documents invoices, bills, financial
reports, articles, and more. We also removed peo-
ple’s names, politically sensitive language, ethnic-
religious content, or other potentially offensive ma-

terial (including inappropriate references to vio-
lence, crime and illegal substances) as the similar
filter API for language cleaning. The last step of
filtering, we make sure that NICE dataset had no
more than 5 (≤ 5) corresponding comments for
each image, and there are not more than 6 (≤ 6)
different dialogue threads for the same image. In
NICE-Setting II, after annotation, we filter out
image-comments pairs without affect feature or
dialogue topic from dialogue thread. We will keep
cleaning and maintaining it in future.

After filtering, the number of images of the
dataset was reduced to 2,233,926 samples and the
number of image-comment pairs was reduced to
7,304,680 samples. Refer to Appendix A to find
the details of dataset cleaning.

We believe that this dataset presents a valuable
resource for the community. Below we highlight
some of the properties of the data.

3.2 Dataset Properties

High-Frequency Words. First, we list the 40
highest-frequency words in the NICE dataset and
compare these to the top words in the captions from
the COCO dataset (Lin et al., 2014). As shown in
Fig. 2, there is almost no overlap among the lists
from the two datasets. This observation reveals that
the types of language used in image commenting
are quite different from those used in image cap-
tioning, which reinforces our decision to construct
the dataset.

Comparison of Various Annotations. Fig. 3
shows summary statistics for several image-to-text
datasets. Fig. 3 (a) compares the percentage of gold
object-mentions in each of the annotations. Object-
mentions are the words associated with the human-
labeled object boundary boxes as provided in the
COCO dataset. As reported in VQG (Mostafazadeh
et al., 2016), COCO captions have the highest per-
centage of these literal objects. Because object-
mentions are often the answers to the questions
in VQA (Antol et al., 2015) and CQA (Ren et al.,
2015), those questions naturally contain objects
less frequently. On the contrary, comments in the
NICE dataset have the lowest percentage of human-
labeled objects, as comments are less descriptive
and more about expressing opinions, sentiment,
and emotion. Fig. 3 (b) shows that the NICE dataset
has the largest vocabulary size. This is expected
due to the large number of comments (7M) and the
fact that comments in social chats tend to be more
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Table 1: Frequency of sentiment words in NICE

(a) (b)

(c) (d)

Figure 3: Comparison of annotations on the NICE
dataset: (a) % of human-labeled objects used in annota-
tions, (b) vocabulary size, (c) % of verb POS, (d) % of
abstract terms.

diverse. Fig. 3 (c) shows that verbs represent a high
percentage of words in the NICE dataset. Fig. 3
(d) indicates that the NICE dataset uses signifi-
cantly fewer abstract terms such as “think” or “win”
than the other datasets. Following Mostafazadeh
et al. (2016), we use a list of most common abstract
terms in English (Vanderwende et al., 2015). The
result is expected because sentences in the NICE
dataset are more likely in the colloquial language
style, which is often the case for engaging in so-
cial media. These analyses show that the NICE
dataset, though also focused on image-to-text gen-
eration, has very different properties from the other
datasets.

Length of Sentences. Fig. 4 shows a histogram
of the number of tokens in the text from the NICE
and COCO datasets. On average, comments in
NICE are longer (38.43 tokens) than captions in
COCO (10.46 tokens); but more significantly, the
comments have much larger variance in length. The
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Figure 4: Histogram of the length of sentences in NICE
dataset and COCO dataset.

COCO captions were created under conditions with
clear guidelines about the nature of the descriptions.
The NICE data contains examples more akin to
free-form comments.

Sentiment Words. Following Hu and Liu
(2004), we extracted top 40 sentiment words for
NICE dataset as shown in Table 1.

The most popular word in the NICE dataset is
“like”, which is a word with strong positive senti-
ment. Referring to the sentiment word list from
Hu and Liu (2004), we find that 11 words among
the top 40 words are sentiment words, as shown in
Table 1 as below. Interestingly, all the 11 words ex-
press positive sentiment. This also reveals a bias in
the real scenario: the usual comments tend to be of
a positive sentiment or people are likely to show a
positive attitude in conversations. On the contrary,
the most frequent words in the COCO dataset tend
to be the ones that describe facts such as action or
objects, and do not contain any sentiment words
listed in Hu and Liu (2004). The sentiment labels
are generated using an off-the-shelf sentiment anal-
ysis tool NLTK (Toolkit, 2017). This demonstrates
that the comments in the NICE dataset often con-
tain opinions, emotional and subjective expressions,
description of subjects, events, and scenes with un-
bounded scope, while the captions in the COCO
dataset are more factual-oriented descriptions of
images.



4460

4 NICE Dataset Settings

4.1 NICE-Setting I (Human Labeling)
The NICE-Setting I of the dataset has over 28,000
human annotated samples. The top sample in Fig. 1
shows an example of this NICE-Setting I.

Human Labeling for NICE-Setting I For some
qualities (e.g., empathy or social appropriateness),
there are currently no automated metrics for evalu-
ating dialogue generation models. However, these
qualities are particularly important for our data in
our task. Therefore, we had human labelers code
a large set (over 28,000) of images and comments.
These samples form the validation and testing sets
of our dataset NICE-Setting I. During each Human
Intelligence Task (HIT), we showed a labeler an
image accompanied by a comment from a single
thread associated with the image. As a single image
can have multiple comment threads we randomly
selected one comment thread for each image per
HIT. A screenshot of the labeling task is shown in
Appendix B. Each HIT involved viewing an image
and six associated comments in the sequence that
they were posted. The labeler was asked to rate
how socially appropriate, empathetic, emotional,
engaging and relevant to the image the comments
were. Each rating was performed on a scale of
1 (not at all) to 7 (extremely). They were also
asked whether the text featured offensive content
(No/Yes). After that, we use the "Heuristic for filter-
ing" algorithm (appendix.B) as a criteria to filter as
constituting a “clean" human labeling dataset. The
percentage of comments labeled as offensive was
3.2% (902/28392). While this might seem small,
our labeling also captured whether comments were
appropriate and comments that were not deemed
offensive could be labeled as inappropriate. A fur-
ther 8.1% were deemed inappropriate on a scale of
0 (inappropriate) - 1 (appropriate). In total, 28,392
image and comment samples were labeled. Each
sample was labeled by one labeler, but due to the
large number of samples we had a total of 180 la-
belers, each who labeled an average of 156 images.
We compensated labelers at a calculated rate of $15
per hour and the labelers were informed of the task
and compensation before completing the task. The
complete set of labels are included in the dataset.

Task Definition for NICE-Setting I. We define
NICE-Setting I as generating dialogue-styled com-
ments for an image. Formally, the generation task
as follows: given an image Iimage, and N com-

ments C1, ...,CN . Systems aim to generate the
comment Ck, where k is from 1 to N using the cur-
rent state information SIimage,C1,...,Ck−1

. The state
information contains input image feature Iimage
and the comments history (C1, ...,Ck−1).

4.2 NICE-Setting II (Auto Labeling)

NICE-Setting I provides human labels for a sub-
set of the NICE dataset. We have annotated over
28,000 human samples. However, human labeling
for the full dataset would be too onerous in terms
of worker and financial resources since we have
2M images and the corresponding comments in
the whole NICE dataset. To address this issue we
use a weakly-supervised approach and generate af-
fect features as a substitute. This forms the second
setting for our analyses.

Auto Labeling for NICE-Setting II. In this
task, we generate style and affect features for all
the comments to facilitate controlling comment
generation. The input in this case is a tuple that
contains an image, the thread title, the current com-
ment history, and affective feature for the targeted
comment. We applied similar filters as in NICE-
Setting I on the image and text and we treat the title
of the thread as the “comment topic”. To further
clean the data we remove some threads without any
comments except the thread title and only keep the
first five comments for each thread. After the clean-
ing, the dataset for this setting finally has 2,150,528
images and 6,720,542 comment dialogue threads,
where each dialogue has a thread topic and up to
five comments like the sample in Fig. 1 2.

Affect Features for Auto Labeling on NICE-
Setting II. For each comment in a thread, affect
features are extracted to represent the language
style and emotions. To replace manual annota-
tion, and capture the rich information in the com-
ments, we use Linguistic Inquiry and Word Count
(LIWC)(Pennebaker et al., 2001). LIWC is a tool
which is widely used for text analysis in linguis-
tics and psychology, and has been demonstrated
to capture important information (Chung and Pen-
nebaker, 2018). In this second setting, we utilized
the LIWC 2007 dictionary, which was composed
of 2,290 words and word stems, and each word
or word stem defines one or more word categories
or sub-dictionaries. With the LIWC tool, we ex-
tract a 64-dimension normalized feature vector for

2Each image can have multiple dialogue threads.
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each comment automatically by counting the num-
ber of words for each dictionary categories. We
hypothesize that these features can represent the
open-domain human affect and language style in
the comments.

Task Definition for NICE-Setting II. We define
the NICE-Setting II task as generating comments
in response to an image, similar to a dialog re-
sponse in a social conversation setting in order to
maximize user engagement and eventually form
long-term, emotional connections with users. We
formalize the generation task as follows: each sam-
ple of this dataset has an image Iimage, a comment
topic H of the whole dialogue, and N comments
C1, ...,CN with corresponding thread affect distri-
bution features A1, ...,AN . Systems aim to gen-
erate the comment Ck using the current state in-
formation SIimage,H,C1,...,Ck−1|Ak , which contains
the input image features Iimage, comment topic H ,
and the comments history (C1, ...,Ck−1), and is
conditioned on the affect feature Ak.

5 Experiments

5.1 Experiments on NICE-Setting I

We split the NICE dataset, described in Sec. 3, into
training (1,908,902 image-comment pairs), valida-
tion (human labeling; 13,896), and testing (human
labeling; 14,496) sets. The data split will be re-
leased along with the dataset. For LSTM based
baselines (i.e., LSTM-XE, SCN, BUTD), we used
a vocabulary that consists of 18,018 words. For
Transformer based models (i.e., VLP) we used a
vocabulary of size 28,996. For the LSTM-XE and
SCN models, we used ResNet-152 (He et al., 2016),
pre-trained on the ImageNet dataset, to extract im-
age features. For models that rely on object de-
tection (e.g., BUTD and VLP) we used an object
detector pretrained on the visual genome dataset
with 1,600 object classes. The feature vector v for
each image had a dimension of 2048.

Baseline Models. We provide the results using
“off-the-shelf” baseline models on the proposed
NICE-Setting I to benchmark performance. This
is important to provide a comprehensive picture of
the current performance of state-of-the-art methods
on this task. The details of the baseline models can
be found in the Appendix C.1.

Automatic Evaluation. The BLEU-4 (Papineni
et al., 2002), CIDEr (Vedantam et al., 2015),

ROUGE-L (Lin, 2004), and SPICE (Anderson
et al., 2016) evaluation results are reported in Ta-
ble 2. The results show that the baseline models,
including state-of-the-art image captioning models
such as BUTD (Anderson et al., 2018), perform
relatively poorly.

Human Evaluation. We had 200 images and
the corresponding generated comments from each
model annotated by human labelers. We used
the same procedure as the annotation described
in Sec. 4.1. The labelers rated each generated
comment in terms of how engaging, emotional,
empathetic, appropriate and relevant it was. Ta-
ble 2 shows the average scores for each model on
these metrics. The VLP model produced comments
that were rated as more engaging (µ=3.79), emo-
tional (µ=3.45), empathetic (µ=3.51) and appropri-
ate (µ=4.22) than other baselines. However, based
on the results, these models are far from capturing
the overarching emotional tone of the dialog more
effectively as human. The responses were rated
as less relevant than captions generated using an
image captioning model. One of the reasons is that
the image captioning model generate descriptions
based on specific objects in the image, while emo-
tional content is more nature and more abstract.
Performing perfectly on all criteria is challenging
but we believe these systems can be improved to
have better results. The qualitative examples for
baseline models on NICE-Setting I are presented
in Appendix C.2.

5.2 Experiments on NICE-Setting II
Pre-training model of MAGIC. Next, we
present a novel large-scale pre-training model on
the NICE-Setting II dataset. Our model (Model-
ing Affect Generation for Image Commenting, or
MAGIC) aims to generate emotional comments
conditioned on an image, a comment topic, affect
features, and the comment history. We introduce
the MAGIC model and our training procedure in
the following section.

MAGIC Training. As large models usually gen-
eralize better to new domains when they are trained
on large volumes of data, we use GPT-2 (Rad-
ford et al., 2019) as the backbone for MAGIC.
It is trained with the objective of predicting the
next word, given an image, comment topic, com-
ment history, affect feature, and all of the previous
words within a defined context window. We trained
MAGIC with the transformer architecture, which
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Automatic Metrics Human Manual Evaluation

Methods (%) Bleu-4 Rouge Cider Spice Engag. Emo. Empath. Appro. Relev.

LSTM-XE 0.29 8.60 1.74 1.40 3.39 (.21) 3.07 (.27) 3.29 (.23) 3.78 (.25) 3.81 (.26)
Caption-Bot 0.30 8.20 3.20 2.00 3.53 (.22) 3.14 (.29) 3.13 (.22) 3.97 (.26) 4.52 (.23)
SCN 0.30 8.40 1.70 1.50 3.53 (.23) 2.99 (.28) 3.01 (.23) 3.95 (.27) 3.94 (.27)
BUTD 0.78 10.31 1.52 1.00 3.44 (.21) 3.33 (.28) 3.40 (.24) 3.93 (.27) 3.95 (.27)
VLP 0.80 10.40 3.20 1.50 3.79 (.19) 3.45 (.28) 3.51 (.22) 4.22 (.23) 4.52 (.23)

Human - - - - 4.53 (.20) 4.09 (.23) 4.41 (.20) 4.85 (.21) 5.13 (.21)

Table 2: Performance on the NICE-Setting I. Left) Automatic metrics. Right) Human evaluation. Performance on
the ground-truth (human) comments shows a empirical limit on the scores. Numbers in brackets reflect standard
errors. We showed previous state-of-the-art methods: LSTM-XE (Vinyals et al., 2015), Caption-Bot (Microsoft,
2017), SCN (Gan et al., 2017), BUTD (Anderson et al., 2018), VLP (Zhou et al., 2019).

Figure 5: An overview of our MAGIC model.

has 12 layers and each layer has 12 heads. Based
on the definition in 4.2, the model aims to compute
the conditional probability L:

L = P (Ck|Iimage,H,Ak,C1, ...,Ck−1) (1)

When training MAGIC, as shown in Fig. 5,
we encode the input image Iimage into a 2048-
dimension feature vector using pre-trained Resnet-
152 model (He et al., 2016). The affect and style
features Ak (introduced in 4.2) are represented as
a 64-dimensional affect feature vector. The image
feature vector and affect feature vector are passed
to two separate linear layers to map to two 768-
dimension vectors i and ak. Then, the comment
topic H , comment history (C1, ...,Ck−1) and
output comments Ck are fed into an embedding
layer β to generate embedding vectors for each
set of tokens respectively, t1, ..., tx, h1, ...,hn and
o1, ...,om for each token as follows:

Etopic = t1, ..., tx = β(H) (2)

Ekhistory = h1, ...,hn = β(C1, ...,Ck−1) (3)

Ekcomment = o1, ...,om = β(Ck) (4)

The encoded image feature vector i, the affect
feature vector ak, the embedded comment topic
vector t1, ..., tx, the embedded history comments
vectors h1, ...,hn and the embedded output com-
ment vectors o1, ...,om are concatenated together
as follows:

Bk = fconcat(i,ak, Etopic, E
k
history, E

k
comment) (5)

Then, Bk is fed to the MAGIC model for training.
For each transformer head we use the masked ver-
sion of the self-attention on query matrix Q, key
matrix K and value matrix V with mask matrix
M as following:

Attention(Q,K,V ) = softmax(
M ◦QKT

√
d

)V (6)

The prediction loss is only computed for
o1, ...,om.

Inference and Learning Strategy of MAGIC.
Given a training dataset with D samples, all com-
ments in each sample has a total of Y tokens. We
maximize the log-likelihood (MLE) to learn the
model parameters θ of the conditional probabilities
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Token Matching Embedding Similarity Diversity

Model Bleu1 Bleu4 ROUGE CIDEr SPICE BertP BertR BertF1 Entropy4 Distinct2

ShowAttTell-Affect 0.274 0.050 0.227 0.579 0.053 0.227 0.146 0.184 10.201 0.126
BUTD-Affect 0.299 0.056 0.269 0.763 0.064 0.249 0.134 0.189 9.851 0.043
GPT-2-NoAffect 0.065 0.003 0.056 0.051 0.011 0.040 0.037 0.037 12.706 0.211
MAGIC (ours) 0.306 0.062 0.288 0.852 0.071 0.204 0.203 0.202 13.709 0.297

Table 3: Results of four models on the NICE dataset. Comparing with ShowAttTell (Xu et al., 2015) and BUTD
(Anderson et al., 2018), MAGIC outperforms the other models in token matching, embedding similarity and diver-
sity.

Lθ over the entire training dataset:

Bk,m = fconcat(i,a
k, Etopic, E

k
history,o

k
1 , ...,o

k
m) (7)

Lθ(D) =

D∑
i=1

Y∑
m=1

pθ(o
k
m|Bk,m−1) (8)

During inference, each token is generated one by
one via beam search with a beam size of two.

Implementation of MAGIC. We split the
6,720,536 image-comment pairs of NICE-Setting
II data to 6,550,536 image-comment pairs for train-
ing, 100,000 image-comment pairs for validation,
and 70,000 image-comment pairs for testing. We
trained MAGIC 30 epochs with batch size 32 on
each GPU using a machine with 4xV100 32G
GPUs and the learning rate was 5e− 5. Total train-
ing time is about 7 days.

Evaluation of MAGIC. For the baseline models,
we modified two off-the-shelf image-captioning
models, Show Attention and Tell (ShowAttTell)
(Xu et al., 2015) and Bottom-Up-Top-Down At-
tention (BUTD) (Anderson et al., 2018), and com-
pared them with our MAGIC model. Details about
how we modified the baseline models are described
in Appendix D.1. Table 3 shows the performance
of our MAGIC model and baseline methods on
the NICE dataset. To evaluate the performance
of the MAGIC model and whether affect features
provide rich information for comment generation,
we evaluate three different aspects of the generated
comments: token matching, embedding similarity
and diversity. For token matching, MAGIC out-
performs ShowAttTell and BUTD on all four met-
rics. As users’ comments can have different words
with similar affect, we also utilize the SPICE (An-
derson et al., 2016) and Bert-Score (Zhang et al.,
2019) to evaluate embedding similarity. Results
show that MAGIC has higher performance on both
scores (Zhang et al. (2019) recommends to use

BertF1 for comparison). Finally, we tested the
diversity of generated comments. We tested En-
tropy4 and Distinct2 from Qin et al. (2019). As
MAGIC is pre-trained on large volume of data, they
have higher diversity than ShowAttTell and BUTD.
Figure 6 shows some generated comment samples
from MAGIC model comparing with BUTD model.
More samples of Generated Image Comments by
MAGIC on NICE-Setting II are included in Ap-
pendix D.2.

5.3 Adapt Pre-training MAGIC Model to
Domain-Specific Task

Pre-training MAGIC model is also flexible to
be adapted to related domain-specific conditional
generation tasks. The affect feature can be re-
placed with emotional or personalized features for
other conditional image-text generation tasks. Ap-
pendix E show an experiment that we adapt trained
MAGIC model to Personality-Captions dataset
(PCD) (Shuster et al., 2019). The result show that
our MAGIC pre-training model has good perfor-
mance on another similar task (PCD).

6 Conclusion and Future Work

In this paper we present a new vision-language
task called Neural Image Commenting with Em-
pathy (NICE) which extends image descriptions
to comments with an emphasis on emotion and af-
fect. We design contexts for this dataset based on
different annotation schemes. For NICE-Setting
II, we propose a novel per-trained model, MAGIC,
for image commenting conditioned on affect and
style features. We show that MAGIC can help
produce affective and emotional image comments.
To facilitate research in this area, we release the
NICE dataset. The social language captured in this
dataset has great value for training conversational
systems. Image commenting is an emerging area
of research and AI systems for conversation are
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Figure 6: Examples of comments generated using the MAGIC model on NICE-Setting II.

becoming increasiningly widely adopted. While
we anticipate that the task we are proposing can
have a significant positive impact in many domains
(e.g., accessibility, storytelling, entertainment), we
acknowledge that they can be abused (e.g., fake
comment generation) and countermeasures may
need to be developed. We hope that solving the
NICE task will benefit a wide range of applica-
tions including visual dialogue generation, visual
question-answering and help create better social
chat-bots and intelligent personal assistants.

Broader Impact

Visual text generation has many applications. In
addition to commenting, grounded language mod-
els could help drive content generation for bots
and AI agents, and assist in productivity applica-
tions, helping to re-write, paraphrase, translate or
synthesize text. Fundamental advances in text gen-
eration help contribute towards these goals and
many would benefit from a greater understanding
of how to model emotional and empathetic lan-
guage. Arguably many of these applications could
have positive benefits. However, this technology
could also be used by bad actors. AI systems that
generate content can be used to manipulate or de-
ceive people. Therefore, it is very important that
this technology is developed in accordance with
responsible AI guidelines. For example, explicitly
communicating to users that content is generated
by an AI system and providing the user with con-
trols in order to customize such a system. It is
possible our dataset could be used to develop new
methods to detect manipulative content - partly be-
cause it is rich with emotional language -and thus
help address another real world problem.

Our dataset is collected from the licensed web-
site, which is not a fully representative source.
Therefore, we also need to understand biases that

might exist in this corpus. Data distributions can
be characterized in many ways. The release of this
dataset will be done in accordance with copyright
law. We will release links to content that is already
in the public domain. Moreover, we have filtered
sensitive content, which helps reduce the risk of
harmful content within the dataset. Thus, it may not
be considered a fully representative source. In this
paper, we have captured how the word level distri-
bution in our dataset is different from other existing
datasets. However, there is much more than could
be included in a single paper. We would argue
that there is a need for more datasets linked to real
world tasks and that by making these data available
we can help researchers answer these questions.
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Appendix

A Details of Filter for NICE Dataset

It took several researchers multiple weeks to re-
move sensitive content for both image and text fil-
tering. For example, we used the “Microsoft Adult
Filtering API” (Microsoft, 2019) to remove adult,
racy and gory images, we use the “Detecting image
types API” (Microsoft, 2018) to remove clip art
and line drawings, we use the “Optical Character
Recognition (OCR) API” (Microsoft, 2020) to re-
move printed or handwritten text from the images,
such as photos of license plates or containers with
serial numbers, as well as from documents invoices,
bills, financial reports, articles, and more. We also
removed people’s names, politically sensitive lan-
guage, ethnic-religious content, or other potentially
offensive material (including inappropriate refer-
ences to violence, crime and illegal substances) as
the similar filter API for language cleaning.

The last step of filtering, we make sure that NICE
dataset had no more than 5 (≤ 5) corresponding
comments for each image, and there are not more
than 6 (≤ 6) different dialogue threads for the same
image.

In NICE-Setting II, after annotation, we filter
out image-comments pairs without affect feature or
dialogue topic from dialogue thread. We will keep
cleaning and maintaining it in future.

B Human Labeling Task for
NICE-Setting I

Screenshot of the human labeling. A screen-
shot of the human labeling task on M-Turk is shown
in Fig. 7.

Figure 7: A screenshot of the human labeling task on NICE-
Setting I.

Heuristic for filtering. We also created a heuris-
tic for filtering “good” comments from “bad”. The
comment had to satisfy the following criteria:

Appr. > 1 AND Emp. > 1 AND Relev. > 1 AND
µ(Appr.,Emp.,Emotion,Relevance) > 3 AND

Offensive == No
(9)

Of the 28,392 images 20,000 (70%) satisfied this
criteria. These filtered image constitute a “clean"
set of data.

C Appendix for NICE-Setting I

C.1 Baseline Models on NICE-Setting I

Vision-Language Pre-Training (VLP). Large-
scale language pretrained models relying on mas-
sive data and self-supervised learning tasks like
masking have created a new state-of-the-art in sev-
eral natural language processing tasks (Devlin et al.,
2018). Pretraining models across language and vi-
sion poses a challenging task where usually the
amount of training data is several times smaller
than the text only pretraining. Among various
vision-language pretraining models proposed re-
cently (Sun et al., 2019; Li et al., 2019, 2020; Su
et al., 2020), and one of them (Zhou et al., 2019)
performed both classification (e.g., VQA) and gen-
eration (image captioning). To use VLP (Zhou
et al., 2019), we pretrain the model on the large
scale Conceptual Captions dataset (Sharma et al.,
2018b) that consists of 3 million image-text pairs.
We then fine tune the pre-trainied model on the
NICE-Setting I dataset with captioning loss only
(minimizing perplexity) and report the results.

Bottom-UP Top-Down Attention (BUTD). Us-
ing pretrained object detectors for image captioning
has resulted in significant performance gains com-
pared to using CNN features as shown in Anderson
et al. (2018). We use this model as a baseline on
the NICE-Setting I dataset.

Semantic Compositional Networks (SCN).
SCNs (Gan et al., 2017) rely on a pretrained
tagger to provide visual cues about the entities
and actions in an image, and leverage LSTMs to
generate a natural language description for images.
Using this model can also help us to understand
the performance difference between a tagger based
model (SCN) and an object detection based model
(BUTD and VLP).
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Microsoft Captioning System (Caption-Bot).
The Microsoft image captioning bot (Microsoft,
2017) is a publicly available agent that can gener-
ate descriptions for a given image.

LSTM based caption generation (LSTM-XE).
LSTM based image captioning (Vinyals et al.,
2015) was one of the first models proposed to use
pretrained CNNs as in conjunction with an LSTM
based language model, which to generate descrip-
tions for images. It is our final baseline on NICE-
Setting I.

C.2 Qualitative Examples for baseline
models on NICE-Setting I

Fig. 8 shows examples of comments generated by
each baseline model for three images on NICE-
Setting I. We observe the comments generated by
baseline models are reasonable in content but not
very emotional, subjective or imaginative in the
context of social dialogue, and thus less likely to
lead to user engagement. We hope that the bench-
mark baselines provided will serve as a reference
for researchers, and inspire the creation of more
appropriate models for human-machine interaction
on NICE dataset.

D Appendix for NICE-Setting II

D.1 Implementation Details of Experiment
for MAGIC on NICE-Setting II

In this section, we describe the implementation
of our baselines in the experiments. We modi-
fied Show Attention and Tell (ShowAttTell) (Xu
et al., 2015) and Bottom-Up-Top-Down Attention
(BUTD) (Anderson et al., 2018) models to the im-
age commenting task. In this task, the inputs are
tuples of the image, the affect feature, a mood topic
and the comment history, and the output is a com-
ment. For both models, we use a linear layer to map
the 64-dimension affect feature to 512 dimensions.
The mood topic is concatenated with the comment
history and passed to an embedding layer.

In ShowAttTell, the decoder computes a
weighted image attention vector at each time step,
and uses it to generate a text token. To adapt this
model on image commenting task, we concatenate
the weighted image attention vector with the 512-
dimension affect vector, the embedded topic and
the comment history. This new concatenation vec-
tor replaces the original image attention vector and
is used to generate the comment token at each time
step.

In BUTD decoder, a top-down attention module
computes an attention vector on image and passes it
to a language module. The language module takes
the image attention vector to generate text token
at each time step. We use the similar modification
that the concatenation of the image attention vec-
tor, the 512-dimension affect vector, the embedded
topic and the comment history, which is passed to
language model for comment decoding. In both
models, the embedding size is 512 dimensions, the
hidden size of LSTMs is 1024 demensions and
they are trained by optimizing the cross-entropy
loss with a learning rate 5e-4.

For the ablation study, we use the GPT-2 (Rad-
ford et al., 2019) trained on NICE dataset without
affect vector (LIWC feature). Thus, the input for
GPT-2 only has the mapped the image features, the
embedded mood topic and the comment history. By
optimizing the cross-entropy loss, GPT-2 is trained
30 epochs on NICE dataset.

D.2 Samples of Generated Image Comments
by MAGIC on NICE-Setting II

In Figure 9, we show some samples generated
from MAGIC model on test set of NICE-Setting II
dataset. Each example contains an image, a topic
which is the thread title of a dialogue post, and the
generated comments.

E Adapt MAGIC to Domain-Specific
Tasks

E.1 Adapt MAGIC to PCD

The pre-training MAGIC model is flexible to be
adapted to related domain-specific conditional gen-
eration tasks. The affect feature can be replaced
with emotional or personalized features for other
conditional image-text generation tasks. For exam-
ple, Personality-Captions dataset (PCD) (Shuster
et al., 2019) defined 215 categories of personality
traits. Based on the hypothesis that the affect fea-
ture can model general language affect or styles,
MAGIC pre-training model learns the relations be-
tween image, comment topic, affect feature and
comments. To adapt trained MAGIC on PCD, the
personalities are embedded via an embedding layer
to 64-dimension vectors. As same dimension as af-
fect features on NICE, these vectors replace affect
feature as input in MAGIC on PCD dataset. We
fine-tuning MAGIC on PCD to generate captions
which are conditioned on pre-defined 215 domain-
specific personalities.
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Figure 8: Example comments to user-shared images generated by the baseline models on NICE-Setting I.

Figure 9: Generated Samples from MAGIC Model on NICE-Setting II Dataset.
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E.2 Analysis of Adapting MAGIC to PCD

Embedding Similarity Diversity

Setting Spice BertP BertR BertF1 Entro.4 Disti.2

GPT2 0.032 0.244 0.286 0.252 11.110 0.399
GPT2-NoAffect 0.032 0.246 0.286 0.254 11.073 0.408
MAGIC 0.035 0.248 0.291 0.257 11.145 0.399

Table 4: Automatic Evaluation results of on Personality-
Captions dataset. Comparing with two baselines using GPT2
(Radford et al., 2019), MAGIC has good transfer learning
ability on domain-specific tasks.

PCD contains (image, personality trait, cap-
tion) triples collected using crowd-workers and has
train/val/test splits with 186,858/5,000/50,000 sam-
ples. We use the adaption method to train MAGIC
continually. In PCD dataset, each image only has
one corresponding caption, there aren’t any com-
ment history and comment topic. We evaluate three
different models. The first one is a GPT-2 model
without training on NICE dataset; the second is
GPT-2 trained on NICE dataset without affect fea-
tures (GPT-2-NoAffect); and the last is the standard
MAGIC model trained on NICE. For each model,
to test the transfer learning ability of MAGIC, we
trained 20 epochs on PCD dataset. As the personal-
ity traits have less information than affect feature,
and generated utterances from pre-trained MAGIC
have high variety, token matching metrics are not
appropriate to evaluate the performance. Only em-
bedding similarity metrics and diversity metrics are
showed in Table 4.

From the embedding similarity results, MAGIC
performs better than the other two models. This
demonstrates that MAGIC has better transfer learn-
ing ability for the similar domain-specific tasks
involving affect or personalities. From the diver-
sity metrics, three models are close with each other.
One main reason is that all three models are pre-
trained on a large number of data, which provides a
high diversity language patterns, which allows for
more human-like outputs. Appendix E.3 contains
generated samples on PCD.

Human Evaluation. We perform six human
evaluation tasks using Amazon Mechanical Turk:
Personality, Appropriate, Emotional, Empathetic,
Engaging, and Relevant. For each task, we use 500
test image sequences from Personality-Captions
dataset. We compare the MAGIC model with GPT-
2 model. During human evaluation, each rater
was displayed the images, personality traits and
the generated captions. The raters were asked to

rate from a 7 point scale on six different aspects:
how the generated caption matched the personality,
whether it was appropriate, emotional, empathetic,
engaging and relevant to the images. The results
of the average scores on each aspects across 500
samples are in table 5. From the results, MAGIC
outperforms the GPT-2 on all aspects. The person-
ality, emotional and engaging have more signifi-
cant difference than the other three aspects. This
indicates that adapting MAGIC on Personality-
Captions dataset can generate more human-like
comments than GPT-2.

Model Perso. Appro. Emo. Empath. Engag. Relev.

GPT-2 3.55 4.52 3.72 3.81 4.34 4.71
MAGIC 3.68 4.58 4.04 3.86 4.45 4.78

Table 5: Human evaluation results.

E.3 Samples of Generated Captions from
MAGIC on Personality-Captions Dataset

In Figure 10, we show some samples generated by
adapting MAGIC model on Personality-Captions
dataset. Each example contains an image, a person-
ality, and the generated comments.
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Figure 10: Generated Samples from MAGIC Model on Personality-Captions Dataset.
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