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Abstract

Adapter modules have emerged as a general
parameter-efficient means to specialize a pre-
trained encoder to new domains. Massively
multilingual transformers (MMTs) have par-
ticularly benefited from additional training of
language-specific adapters. However, this ap-
proach is not viable for the vast majority
of languages, due to limitations in their cor-
pus size or compute budgets. In this work,
we propose MAD-G (Multilingual ADapter
Generation), which contextually generates lan-
guage adapters from language representations
based on typological features. In contrast
to prior work, our time- and space-efficient
MAD-G approach enables (1) sharing of lin-
guistic knowledge across languages and (2)
zero-shot inference by generating language
adapters for unseen languages. We thor-
oughly evaluate MAD-G in zero-shot cross-
lingual transfer on part-of-speech tagging, de-
pendency parsing, and named entity recogni-
tion. While offering (1) improved fine-tuning
efficiency (by a factor of around 50 in our
experiments), (2) a smaller parameter budget,
and (3) increased language coverage, MAD-
G remains competitive with more expensive
methods for language-specific adapter train-
ing across the board. Moreover, it offers sub-
stantial benefits for low-resource languages,
particularly on the NER task in low-resource
African languages. Finally, we demonstrate
that MAD-G’s transfer performance can be
further improved via: (i) multi-source train-
ing, i.e., by generating and combining adapters
of multiple languages with available task-
specific training data; and (ii) by further fine-
tuning generated MAD-G adapters for lan-
guages with monolingual data.

1 Introduction

Multilingual NLP has witnessed large ad-
vances, with cross-lingual word embedding spaces
(Mikolov et al., 2013; Artetxe et al., 2018; Glavaš

et al., 2019) and, more recently, massively multi-
lingual Transformers (MMTs) like mBERT (De-
vlin et al., 2019), XLM-R (Conneau et al., 2020),
and mT5 (Xue et al., 2021) as main vehicles of
cross-lingual transfer. Although MMTs display im-
pressive (zero-shot) cross-lingual transfer abilities
(Pires et al., 2019; Wu and Dredze, 2019), their per-
formance has been shown to drop when the target
language is typologically distant to the source lan-
guage, or the size of its pretraining data is limited
(Hu et al., 2020; Lauscher et al., 2020). In addi-
tion, their coverage of the world’s languages—and
consequently the range of language technology ap-
plications they can support—remains insufficient.1

Adapters (Rebuffi et al., 2017; Houlsby et al.,
2019) have been proposed as a parameter-efficient
means to extend multilingual models to under-
represented languages (Bapna and Firat, 2019;
Üstün et al., 2020). The general practice is to train a
language adapter on the unlabeled data for each lan-
guage (Pfeiffer et al., 2020b) via masked language
modeling (MLM). However, this generally requires
substantial amounts of monolingual data, which
prevents adapters from serving under-resourced
languages where such additional language-specific
capacity would be most useful.

To address this deficiency, we propose mul-
tilingual adapter generation (MAD-G), a novel
paradigm that enables the generation of adapters
for low-resource languages by sharing informa-
tion across languages. Instead of learning separate
adapters for each language, MAD-G leverages con-
textual parameter generation (CPG; Platanios et al.,
2018a; Ponti et al., 2019b), that is, it learns a sin-
gle model that can generate a language adapter
for an arbitrary target language. At the core of
MAD-G is a contextual parameter generator which

1mBERT and XLM-R have been trained on corpora from
104 and 100 languages, respectively. According to Glottolog
(Hammarström et al., 2017), however, there are over 7,000
languages spoken around the world.
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Figure 1: Cross-lingual transfer with MAD-G.
À MAD-G training: the generator component learns to
generate language-specific adapters given URIEL vec-
tors of input languages; the parameters of the generator
are trained with an MLM objective, where instances of
the respective language are passed through the frozen
Transformer layers and the generated adapter parame-
ters. Á In the downstream task fine-tuning, both the
Transformer weights as well as the weights of the gener-
ated source-language adapter are frozen; an additional
task adapter with randomly initialized weights is placed
on top of the generated source language adapter. Dur-
ing target language downstream inference, the gener-
ated source language adapters are replaced with the
generated target language adapters.

takes the typological vector of a language as input
and outputs the parameters of the language-specific
adapter. The generator’s parameters are trained via
MLM on the Wikipedias of 95 languages, selected
to maximize linguistic diversity. Unlike prior CPG
work (Platanios et al., 2018a; Üstün et al., 2020),
MAD-G generates language adapters that are task-
agnostic, thus allowing for an efficient and mod-
ular cross-lingual transfer across the board, i.e.,
the MAD-G language adapters can be leveraged in
arbitrary downstream tasks (Pfeiffer et al., 2020b).

MAD-G shares information across languages (i)
at the level of hidden representations by sharing
the parameters of the adapter generator as well as
(ii) at the typological level by conditioning on fea-
tures from the URIEL database (Littell et al., 2017).
The latter additionally enables zero-shot transfer
to unseen languages. Further, we propose a vari-
ant of MAD-G in which we generate adapters also
conditioned on their Transformer layer position
(see Section 3.2), allowing MAD-G to be much
more parameter-efficient than adapter-based trans-
fer methods of prior work.

In experiments on zero-shot cross-lingual trans-

fer on part-of-speech tagging (POS), dependency
parsing (DP), and named entity recognition (NER),
MAD-G demonstrates competitive performance to
training more expensive language-specific adapters
and shows strong performance in low-resource sce-
narios, e.g., in the NER task for African languages.
What is more, we show that transfer performance
can be further improved by (a) multilingual training
of task adapters and (b) fine-tuning of generated
MAD-G adapters, via MLM, on small amounts
of monolingual data. Finally, we provide a nu-
anced analysis of transfer performance to unseen
languages, highlighting the importance of the diver-
sity of the language sample selected for pretraining.

2 Background

Before introducing MAD-G in detail in Section 3,
we recapitulate its key components adopted from
previous work. In particular, we discuss language
adapters (LA) in Section 2.1 and Contextual Pa-
rameter Generation (CPG) in Section 2.2.

2.1 (Why) Language Adapters

Massively multilingual models infamously suffer
from the ‘curse of multilinguality’ (Arivazhagan
et al., 2019; Conneau et al., 2020): for a fixed
model capacity, their performance decreases as they
cover more languages. Extending them to under-
represented and unseen languages is far from trivial:
additional training (of all model parameters) for
such languages can lead to catastrophic forgetting
of the previously acquired knowledge (McCloskey
and Cohen, 1989; Santoro et al., 2016). A common
remedy for both their coverage–performance trade-
off and limited flexibility is to allocate additional
model parameters for individual languages. This is
typically achieved through the use of adapter layers
(Houlsby et al., 2019; Pfeiffer et al., 2020b).

In particular, a language adapter is a light-weight
component inserted into a MMT such as mBERT
(Devlin et al., 2019) or XLM-R (Conneau et al.,
2020) with the purpose of specializing the MMT
for a particular language, in order to either (a) sup-
port a new language not covered by the MMT’s
original multilingual pretraining (Pfeiffer et al.,
2020b; Artetxe et al., 2020) or (b) recover/improve
the performance for a particular (resource-rich) lan-
guage (Bapna and Firat, 2019; Rust et al., 2021). In
this work, we adopt the competitive and lightweight
(so-called bottleneck) adapter variant of Pfeiffer
et al. (2021a). There, only one adapter module,
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consisting of a successive down-projection and
up-projection, is injected per Transformer layer,
after the feed-forward sublayer (see Figure 1).2

The language adapter LAb at the b-th Transformer
layer/block performs the following operation:

LAb(hb, rb) = Ub a(Dbhb) + rb, (1)

where hb and rb are the Transformer hidden
state and the residual at layer b, respectively.
Db ∈ Rh×m and Ub ∈ Rm×h are the down- and
up-projections, respectively (h being the Trans-
former’s hidden layer size, and m the adapter’s
dimension), and a(·) is a non-linear activation func-
tion. The residual connection rb is the output of
the Transformer’s feed-forward layer whereas hb

is the output of the subsequent layer normalisation.
The parameters of a language adapter are learned
through MLM with the original parameters of the
MMT kept frozen (Pfeiffer et al., 2020b).

2.2 (Why) Contextual Parameter Generation

Language adapters are an instance of a common
design pattern in multilingual NLP: training a sepa-
rate model or model components for each target lan-
guage.3 This approach based on a separate instance
per language has two crucial drawbacks: 1) the to-
tal training time and number of parameters learned
increase linearly with the number of languages; 2)
a lack of information sharing across languages due
to the complete independence of learned parame-
ters, which prevents low-resource languages from
benefiting from their typological and genealogical
ties to high(er)-resource languages.

CPG is a technique introduced by Platanios et al.
(2018a) to address these drawbacks. While orig-
inally conceived for neural machine translation
(NMT), CPG can be applied to any neural model
f parameterized by θ, for which we aim to learn
parameterizations for a number of different con-
texts; in multilingual NLP, these “contexts” are lan-
guages. In the instance-per-language approach, an
independent parameterization θ(l), l ∈ {1, . . . , nl},
is learned for each of the nl languages of interest.

2According to Pfeiffer et al. (2020a, 2021a) and Rücklé
et al. (2021), such an architecture with a single adapter per
Transformer layer is more parameter-efficient while perform-
ing on par with the architecture of Houlsby et al. (2019) with
two adapters per Transformer layer (one after the multi-head
attention sublayer and one after the feed-forward sublayer).

3Other examples include the training of language-specific
pretrained language models (Rust et al., 2021) as well as
language pair-specific encoder–decoder models for machine
translation (Luong et al., 2016; Firat et al., 2016).

In CPG, the only language-specific parameters that
we learn are the low-dimensional language embed-
dings λ(l) ∈ Rdl . These are used by the gener-
ator g, a hyper-network (Ha et al., 2017) compo-
nent4 with its own parameterization φ, to produce
the language-specific parameterization of the main
model: θ(l) = gφ(λ

(l)). While g can in principle
be any differentiable function (i.e., arbitrarily deep
neural model), in practice it is typically set to a
simple linear projection (i.e., φ = W ):

gW (λ(l)) , Wλ(l), (2)

where W ∈ Rnp×dl is a learnable weight matrix,
np being the number of parameters of f .

The total number of parameters learned when
training nl independent models is nlnp, whereas
the number of parameters in the W matrix is dlnp.
Therefore, neglecting the small number of param-
eters dedicated to language embeddings, the CPG
approach uses fewer parameters when dl < nl.5

More importantly, in multilingual training the gen-
erator matrix W is shared across all languages,
which enables knowledge sharing across languages
and leads to improved transfer performance.

Platanios et al. (2018b) and Ponti et al. (2021a)
opt for randomly initializing language embeddings
λ(l) and learning them end-to-end. Specified like
this, however, CPG cannot generalize to languages
unseen in training, as it would lack embeddings
for those languages at inference. To support gen-
eralization to arbitrary new languages, one must
ground language embeddings in some external lan-
guage representation, available for many languages.
To this end, Ponti et al. (2019b) exploit typological
language vectors from the URIEL database (Littell
et al., 2017) directly as language embeddings to
generate a full set of model parameters. In a similar
vein, Üstün et al. (2020) use the typological lan-
guage vectors from URIEL to generate task- and
language-specific adapters for dependency parsing:
they learn the parameters φ of the generator g via
multilingual dependency parsing training on 13 lan-
guages. In contrast, MAD-G’s multilingual MLM
training allows the generation of task-agnostic LAs
that can support downstream cross-lingual transfer
for arbitrary NLP tasks.

4A hyper-network is a neural model that generates the
parameters of another (main) neural model.

5Training MAD-G on 95 languages with dl = 32 (this
work) achieves roughly a threefold saving in parameter size.
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3 MAD-G: Methodology

MAD-G aims to enable resource-efficient adapta-
tion of MMTs to a wide range of previously unseen,
radically resource-poor languages,6 and contribute
in this manner to more sustainable (Strubell et al.,
2019; Moosavi et al., 2020) and more inclusive
NLP (Joshi et al., 2020). We couple (i) the com-
putational efficiency of the light-weight adapters
(cf. Section 2.1) and (ii) knowledge sharing and
zero-shot language transfer capabilities of CPG (cf.
Section 2.2), with (iii) external linguistic (i.e., ty-
pological) knowledge (Ponti et al., 2019a) towards
supporting arbitrary NLP tasks for (even radically)
resource-poor languages.

MAD-G mitigates important limitations of prior
work. Unlike Üstün et al. (2020), we generate task-
agnostic LAs, (re)usable across NLP tasks. Un-
like the MAD-X framework (Pfeiffer et al., 2020b),
which trains LAs independently for each language
(requiring sufficient monolingual corpora), MAD-
G can support unseen and resource-poor languages
in downstream tasks by generating LAs from typo-
logical vectors. Moreover, MAD-G leverages typo-
logical relations between languages. We also show
that the two approaches can be successfully com-
bined: monolingual MLM fine-tuning of a MAD-
G-generated LA yields further benefits.

3.1 Generating Language Adapters

Our input representation for each language is a
sparse typological vector t(l) encompassing 289
binary linguistic features (103 syntactic, 28 phono-
logical and 158 phonetic features) from the URIEL
language typology database (Littell et al., 2017).
We obtain the language embedding λ(l) from t(l)

using a single-layer linear down-projection: λ(l) =
V t(l), with the parameter matrix V ∈ Rdl×289.
Down-projecting to a dimension dl << 289 pre-
vents W from being impractically large. By
grounding language embeddings in external expert
linguistic knowledge (i.e., URIEL vectors), we en-
able generalization to all languages for which such
typological vectors exist, regardless of the avail-
ability of monolingual text for those languages for
generator training. In multilingual MLM training,
we generate the adapter parameters θ(l) for each
instance from the embedding of the respective lan-

6With “radically resource-poor” languages we refer to
languages for which even the acquisition of non-negligible
amounts of text data is difficult.

guage, as specified in Eq (2).7 Let nb be the number
of layers in the MMT (e.g., for mBERT (Devlin
et al., 2019), nb = 12). The MAD-G parameter
matrix W then has nb · 2 · h ·m × dl parameters,
where h is the hidden size of the Transformer layer
and m the bottleneck size of the adapter layer (i.e.,
a single adapter module has 2 · h ·m parameters).

3.2 Factoring Out Layer Embeddings

By factoring out language-specific embeddings
λ(l), we force the MAD-G parameters W to share
knowledge across languages. The generated lan-
guage adapters in different Transformer layers
are, however, still mutually independent. By ad-
ditionally factoring out representations of each
Transformer layer indices into layer embeddings
λ(b) ∈ Rdb , b ∈ {1, 2, . . . , nb}, we can condition
the adapter generation not only on languages but
also on layers. This has two potential benefits: (i) it
allows for information sharing between adapters of
different layers, and, more importantly, (ii) it sub-
stantially reduces the size of the generator W . In
this model variant, dubbed MAD-G-LS, the genera-
tor outputs adapters θ(l,b) for language-layer pairs:

θ(l,b) , W (λ(l) ⊕ λ(b)), (3)

with the concatenation of the language embed-
ding λ(l) and layer embedding λ(b) as input. The
MAD-G-LS generator has 2 · h ·m× (dl + db) pa-
rameters, which is, assuming language and layer
embeddings of equal size (i.e., db = dl), a parame-
ter reduction by a factor nb

2 compared to the base
MAD-G configuration from §3.1.

3.3 Multi-Source Task Adapters

Once the multilingual adapter generator has been
trained via multilingual MLM, the generated LAs
can be used to facilitate downstream cross-lingual
transfer. Here, we follow the task-specific fine-
tuning setup of MAD-X (Pfeiffer et al., 2020b): we
insert and train the task-specific adapter (TA) on
top of the language adapter of the source language—
the parameters of the LA as well as parameters of
the original MMT are kept frozen. In prior work,
the TA is trained on data from a single source lan-
guage ls with the LA for ls activated (with frozen
parameters). At inference time, the LA for the tar-

7An alternative option for adapter generator input would
be randomly initialized language embeddings λ(l); this would,
however, prevent the opportunity of downstream generaliza-
tion to unseen languages.
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get language lt is plugged in instead of ls’s adapter,
with the same TA (Pfeiffer et al., 2020b).

In downstream tasks with task data in multiple
languages, we can resort to multi-source transfer,
i.e., multilingual training of the task adapter. This
is possible with per-language trained LAs (e.g.,
MAD-X adapters) as well as without any LAs. We
hypothesized that multi-source training would be
particularly beneficial with MAD-G because of the
knowledge shared by LAs of different languages
as a result of their generation with the MAD-G’s
multilingual generator. In other words, with MAD-
G, the multi-source task adapter training is sup-
ported by a single LA generator model (see Fig-
ure 1), rather than a set of independently trained
LAs. However, our experiments show that multi-
source training is greatly beneficial regardless of
language adapter type; the advantage does not seem
larger for MAD-G in particular.

We employ a straightforward approach to TA
training on the set of source languages Ls: in each
step, we (1) randomly select a language l from
Ls from which we sample a training batch and
(2) in the forward pass – before the task adapter
– activate the LA of the language l for that batch.
To the best of our knowledge, we are the first to
investigate multi-source adapter-based transfer in
cross-lingual settings.

4 Experimental Setup

Tasks and Languages. We evaluate on three
downstream tasks which provide sufficient eval-
uation data for low-resource languages: part-of-
speech (POS) tagging, dependency parsing (DP),
both on the Universal Dependencies (UD) 2.7
dataset (Zeman et al., 2020), and named entity
recognition (NER) on the MasakhaNER dataset for
African languages (Adelani et al., 2021). For POS
and DP, we evaluate on a substantial subset of all
UD languages with available treebanks.8 We dis-
cern between three language groups in evaluation,
with some examples in Table 1: (i) mBERT-seen
languages are those included in mBERT’s pretrain-
ing; (ii) MAD-G-seen languages were not part of
mBERT’s pretraining but are included in MAD-

8For POS and DP, we omit only (i) languages with scripts
unseen in mBERT’s pretraining, where mBERT’s tokenizer
predominantly produces unknown (UNK) tokens (Pfeiffer et al.,
2021b), (ii) languages lacking any information in URIEL,
and (iii) languages whose treebanks have missing fields. For
MasakhaNER, we evaluate on all dataset languages except
Amharic, as Amharic also uses a script unseen by mBERT.

G training; and (iii) unseen languages are those
not included in mBERT pretraining nor in MAD-G
training.

4.1 Baselines and MAD-G Variants

mBERT is an MMT pretrained on the Wikipedias
of 104 languages. We use mBERT as the base
MMT for MAD-G. XLM-R is a state-of-the-art
MMT pretrained on the CommonCrawl data of 100
languages (Conneau et al., 2020).9 We evaluate
them in the standard transfer setup with full-model
fine-tuning (-ft).

MAD-X is the state-of-the-art modular adapter-
based framework for cross-lingual transfer (Pfeiffer
et al., 2020b) based on independent MLM-training
of a dedicated LA for each language. We train
our own MAD-X LAs when no pretrained ones
are available, notably for the six MAD-G-seen
UD languages. Training LAs for all other low-
resource languages, however, is prohibitively com-
putationally expensive,10 so during all MAD-X ex-
periments, the pool of languages with available
MAD-X adapters consists of the 20 high-resource
source languages used in multi-source setups (see
Section 4.2) and MAD-G-seen languages. When
evaluating on a target language without an avail-
able MAD-X LA, we instead choose the available
MAD-X LA for the language that is closest to the
target language.11

MAD-G is the base setup of our method from Sec-
tion 3.1. MAD-G-LS is the variant of MAD-G in
which the adapter generation is additionally condi-
tioned on layer embeddings, as described in Sec-
tion 3.2. MAD-G-en uses the English adapter
rather than that of the target language during in-
ference on target language instances. The purpose
of this baseline is to test if the parameters generated
for different languages are actually meaningfully
different and able to outperform the English LA.

TA-only trains the task adapter directly on top of
the MMT, i.e., without any language adapter. With

9Although it mostly outperforms mBERT in multilingual
and cross-lingual transfer experiments, mBERT was used in
prior work as a more robust choice for radically resource-
poor languages in general (Pfeiffer et al., 2020b). Our NER
experiments on African languages confirm this (Table 3 later).
Note that MAD-G can be applied to XLM-R as well.

10Note that this efficiency and scalability shortcoming of
MAD-X is precisely one of the main motivations for MAD-G,
i.e., for language adapter generation for unseen languages.

11We quantify the linguistic proximity of languages as the
cosine similarity between their respective URIEL-based lan-
guage vectors (Lauscher et al., 2020).
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group definition # with UD treebank language examples

mBERT-seen seen during mBERT pretraining 56 English, Japanese, Chinese
MAD-G-seen seen only during MAD-G training 6 Buryat, Maltese, Erzya
unseen completely unseen 33 Bhojpuri, Moksha, Warlpiri

Table 1: Definitions of three language groups. “# with UD treebank” is the number of languages belonging to each
group included in the evaluation of the UD POS-tagging/dependency parsing tasks.

this baseline, we seek to quantify the contribution
of dedicated LAs in general.

4.2 MAD-G Training Setup

MLM-training of MAD-G’s adapter generator is
run on Wikipedias of 95 languages. We considered
only the languages with at least 1,000 Wikipedia ar-
ticles and selected them following a greedy process
that maximizes typological diversity. At each step,
we select the language with the largest number of
articles belonging to the language family and its
genus that are least represented in the current sam-
ple of languages (Ponti et al., 2020); see Appendix
for a full list.

Following Pfeiffer et al. (2020b), the LA bot-
tleneck size is m = 384. Both the language
embedding dimension dl and the layer embed-
ding (if used) dimension db are set to 32. At
each MLM training step, we randomly sample
a batch in a language from an exponentially
smoothed distribution with a cap preventing over-
sampling of high-resource languages: the prob-
ability of selecting a language l is proportional
to min(n_examples(l), 500, 000)0.5. Training runs
for 200,000 steps in total over all languages; batch
size is 64 and the maximum sequence length is 256.
We used a linearly decreasing learning rate, start-
ing at 5e-5. In contrast, relying on the same batch
size and max sequence length, MAD-X was trained
for 100,000 steps for each language. This makes
the average per-language duration of MAD-G train-
ing ≈50 times shorter than for MAD-X. Moreover,
MAD-G and MAD-G-LS have 226M and 38M pa-
rameters respectively, compared to 728M for a hy-
pothetical 95 MAD-X dedicated language adapters.

Single- and Multi-Source Transfer. We train task
adapters on English data with the English MAD-G
adapter. For comparability, we adopt the TA con-
figuration of MAD-X (Pfeiffer et al., 2020b): the
bottleneck size is m = 48. For POS-tagging and
NER we use the standard token-level single-layer
multi-class classifier. For DP, we use the shallow
variant (Glavaš and Vulić, 2021) of the biaffine
dependency parser of Dozat and Manning (2017).

For POS tagging and DP, we train on the English
EWT treebank. For consistency and comparability
with multi-source experiments, we sample 12,000
sentences for training (out of the 12,543 available
examples). For NER, we train on the CoNLL 2003
English dataset (Tjong Kim Sang and De Meulder,
2003).12 For all tasks, we train for 15,000 steps
with batch size 8 (roughly 10 epochs) and a linearly
decreasing learning rate, starting at 5e-5.

For multi-source transfer experiments, we se-
lect 20 typologically diverse high-resource source
languages for POS-tagging and DP using the fol-
lowing process: we iterate over the UD languages
in the descending order of treebank size and select
a language if it belongs to a genus not already rep-
resented in the sample.13 We again sample a total
of 12,000 examples (600 per language).

5 Results and Discussion

In what follows, we focus on reporting and analyz-
ing the most important global trends in results with
accompanying discussions and side experiments.
For completeness, the full results per individual
target language are provided in the Appendix.

Single-Source Transfer. Relative to all methods
which do not employ language adaptation, we find
that the use of MAD-G in the primary MAD-G
and MAD-G-LS settings is greatly beneficial on
all tasks for MAD-G-seen languages in both the
single- and multi-source transfer scenarios (see Ta-
bles 2 and 3), with the very parameter-efficient
MAD-G-LS being only slightly weaker than the
base MAD-G variant in general, even slightly out-
performing it for some languages and transfer se-
tups. Despite having far less capacity per tar-
get language, MAD-G retains much of the perfor-
mance gain of MAD-X on languages seen during
language adapter training, showing that MAD-G

12As MasakhaNER does not have the MISC category, we
replace the B-MISC and I-MISC token tags with the O tag
in the CoNLL training set. Similarly, we exclude the DATE
class (i.e., B-DATE and I-DATE tags) from the MasakhaNER
evaluation, because they do not exist in the CoNLL dataset.

13For comparability with single-source experiments, we
selected English instead of German as the only exception.
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Part-of-speech tagging Dependency parsing

source method mBERT-seen MAD-G-seen unseen mBERT-seen MAD-G-seen unseen

en

MAD-G 76.7 65.9 44.4 63.9/49.2 46.3/28.0 34.7/16.8
MAD-G-LS 77.8 65.2 43.9 64.9/49.9 44.4/26.0 34.7/16.0
MAD-G-en 76.5 40.5 44.9 66.4/51.9 27.6/11.0 35.4/18.2
TA-only 78.4 40.8 45.5 67.0/51.8 29.6/11.4 36.0/18.1
MAD-X 76.9 68.8 43.4 61.5/46.9 48.6/30.8 33.1/15.7
mBERT-ft 76.6 38.7 43.9 66.3/51.3 27.8/10.0 34.0/16.4
XLM-R-ft 79.6 46.8 43.6 55.4/42.0 30.0/13.4 31.9/15.5

multi

MAD-G 86.1 71.0 50.4 75.6/65.4 54.4/38.0 40.1/23.1
MAD-G-LS 86.5 70.0 51.0 76.6/66.5 53.9/36.9 41.6/23.7
MAD-G-en 85.8 45.8 50.5 75.8/65.6 33.1/15.2 40.3/23.6
TA-only 86.8 48.8 51.2 76.9/66.8 35.7/17.0 41.3/23.7
MAD-X 83.7 73.8 47.3 74.7/64.2 58.1/42.9 39.6/22.5
mBERT-ft 87.4 45.4 51.2 80.6/70.4 35.5/15.6 41.3/23.4
XLM-R-ft 89.4 53.9 55.0 65.5/55.4 36.8/19.4 36.3/21.4

Table 2: UD POS tagging accuracy scores and dependency parsing unlabeled/labeled attachment scores for var-
ious language adapter and fine-tuning settings. Values are shown as averages over each of the language groups
mBERT-seen, MAD-G-seen and unseen, defined in Table 1. Task adapters are trained only on English data
(en, upper part) and 20 diverse, high-resource languages (multi, lower part). The highest score per column in each
of the two setups is in bold, the second highest is underlined.

hau ibo kin lug luo pcm swa wol yor avg.
method MAD-G-seen MAD-G-seen MAD-G-seen unseen unseen unseen mBERT-seen unseen mBERT-seen

MAD-G 77.1 69.9 66.1 54.2 32.5 72.6 72.6 32.1 68.8 60.7
MAD-G-LS 72.8 67.5 63.0 55.7 33.3 72.4 71.3 36.7 68.4 60.1
MAD-G-en 44.9 54.5 51.4 50.6 32.9 70.4 69.2 36.4 63.9 52.7
TA-only 43.4 55.7 52.8 47.9 32.8 72.3 68.6 32.1 65.3 52.3
mBERT-ft 43.2 45.5 49.9 49.3 31.6 70.5 65.8 28.1 54.3 48.7
XLM-R-ft† 66.4 45.5 36.1 34.8 31.9 68.4 74.5 21.6 33.4 45.8

Table 3: F1 scores on the MasakhaNER dataset for African languages. Task adapter training/model fine-tuning is
conducted on the CoNLL 2003 English NER dataset. †XLM-R-ft results are as reported by Adelani et al. (2021).

Part-of-speech tagging Dependency parsing

method mBERT-genus MAD-G-genus unseen-genus mBERT-genus MAD-G-genus unseen-genus

MAD-G 49.1 40.6 34.0 38.2/19.7 28.4/13.2 28.5/11.1
MAD-G-LS 50.0 40.8 29.4 38.7/19.2 26.2/11.9 28.5/9.8
MAD-G-en 51.1 37.5 32.2 39.7/21.4 24.3/11.1 29.8/13.2
TA-only 51.5 37.9 33.4 40.4/21.3 26.9/11.9 29.0/12.7
MAD-X 49.3 38.3 30.3 37.3/18.8 23.8/9.0 26.5/10.7
mBERT-ft 48.7 37.3 34.5 37.6/19.4 23.5/8.6 29.9/12.4
XLM-R-ft 50.8 39.1 27.1 34.7/17.7 24.5/10.2 28.4/12.5

Table 4: UD POS tagging accuracy scores and dependency parsing unlabeled/labeled attachment scores for for
various language adapter/fine-tuning settings. Values are shown as averages over each of the language groups
mBERT-genus, MAD-G-genus and unseen-genus. The task adapter is trained only on English data.

achieves efficient yet effective language adaptation.
The MAD-G-en variant does not achieve such
gains on MAD-G-seen languages, demonstrating
that MAD-G does generate meaningfully different
adapter parameters for different languages.

The use of MAD-G is not in general benefi-
cial for mBERT-seen languages; this is unsurpris-
ing since it is unrealistic to believe that mBERT’s
knowledge of languages observed during its own
pretraining can be substantially improved through
language adaptation on a much smaller amount of
data. At first glance there also does not appear to
be any benefit to using MAD-G for unseen tar-
get languages, except for NER, where gains are

substantial. However, averaging the results over
all languages in this group does not provide a full
picture because it consists of languages whose re-
lationships to those observed during training differ
substantially. Therefore, we provide a finer-grained
analysis below.

While the use of typological vectors for gener-
ating LAs allows MAD-G to learn features which
could generalize well to unseen languages, this as-
sumption should mostly hold for unseen languages
whose ‘typological relatives’ are available during
training. To investigate the effect the degree of
typological relatedness has on MAD-G’s general-
ization ability, we further divide the unseen lan-
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Figure 2: Multi-source transfer with MAD-G. We in-
crease the number of source languages left-to-right
from 1 to 20 while keeping the total number of (multi-
source) examples constant at each step.

guages into three subgroups: mBERT-genus (the
21 languages whose genus matches that of at least
one language seen during mBERT pretraining);
MAD-G-genus (the 4 languages whose genus was
not seen during mBERT pretraining but was seen
during MAD-G training); unseen-genus (the
8 languages whose genus is completely unseen).
Table 4 shows the POS tagging and DP perfor-
mance for each of the three unseen subgroups.
MAD-G is beneficial on the MAD-G-genus sub-
group, while its benefits do not extend to the other
two subgroups. The results for mBERT-genus
versus MAD-G-genus languages mirror those for
mBERT-seen versus MAD-G-seen languages;
in general, mBERT’s knowledge of a genus (or spe-
cific language) can be improved through language
adaptation if and only if that genus/language was
not observed during mBERT’s pretraining. As ex-
pected, the scores on unseen-genus languages
confirm the intuition that the performance on lan-
guages typologically unrelated to any language
seen during mBERT and/or MAD-G training can-
not be recovered solely on the basis of limited ex-
ternal typological information. For cross-lingual
generalization, the typological diversity of pretrain-
ing languages is thus paramount.

Multi-Source Transfer. When training on 20 lan-
guages, while maintaining the overall number of
training examples, we observe large gains across all
settings and language groups for both POS tagging
and DP (see Table 2). This suggests that multi-
source training yields a more general and language-
agnostic representation of the task adapter, thus
transferring better to unseen languages. We inves-
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Figure 3: Performance on POS tagging and DP
on unseen languages when MAD-G-initialized
(MAD-G-ft) or randomly initialized (rand-ft) lan-
guage adapters are fine-tuned by MLM on varying
amounts of unlabeled text.

tigate the effect of multi-source training further in
Figure 2, where we gradually add languages to the
multi-source pool, while (again) maintaining the
overall number of training examples. We find that
the transition from one language to two languages
in the source-pool results in the largest relative per-
formance increase, but the performance still rises
with the addition of more languages. In sum, in
line with previous findings (Ponti et al., 2021b), our
results indicate that the language diversity of train-
ing data has strong positive effects on zero-shot
transfer across multiple methods and setups.

Fine-tuning MAD-G-Initialized Adapters. Al-
though interesting from a theoretical point of view,
the scenario where there is no unannotated data
whatsoever available for the target language might
be unrealistic. We thus examine a setup where there
is a small amount of unannotated data available. In
this case, we can still exploit MAD-G by generat-
ing an initialization of a language-specific adapter
for a target language lt, and then fine-tuning its
parameters via MLM on the unannotated data.

We perform POS tagging and DP experiments
when fine-tuning MAD-G-initialized language-
specific adapters on the 14 unseen UD languages
which have Wikipedias.14 We simulate different
degrees of resource-poverty by sampling training
datasets with 1,000, 3,000, 10,000, 30,000 and
100,000 words from the full Wikipedia. We com-
pare this MAD-G-ft setting with the results of fine-
tuning randomly-initialized LAs on the same data

14We do not perform NER experiments because there are
only two unseen MasakhaNER languages with Wikipedias.
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(rand-ft).15 Figure 3 shows that there is a large
and consistent improvement on the 14 unseen
evaluation languages as their language adapters are
fine-tuned on increasingly large amounts of unan-
notated text. For both tasks, the performance is
better when the language adapter is initialized with
the weights generated by MAD-G than when the
weights are randomly initialized. The difference
between the two settings is modest for POS tag-
ging, but it is larger for DP and is maintained even
when 100,000 training tokens are available.

6 Conclusion

We proposed MAD-G, a modular and efficient
cross-lingual transfer framework for low-resource
languages, that generates task-agnostic adapters
for massively multilingual Transformers (e.g.,
mBERT) from typological language representa-
tions. MAD-G performs competitively with a state-
of-the-art adapter-based transfer approach MAD-X;
yet its training is roughly 50 times more efficient
per target language. MAD-G can also be applied
to unseen languages, benefiting those belonging to
a genus introduced during its training, and it can
be used as a better initialization for “radically low-
resource languages”; there, its generated language
adapters can be further refined on small amounts
of text, improving downstream performance. We
further show that cross-lingual performance with
adapters can be greatly improved by training on
multiple source languages. We release the MAD-
G code online at: https://github.com/
Adapter-Hub/adapter-transformers.
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Özgür, Balkız Öztürk Başaran, Niko Partanen, Elena
Pascual, Marco Passarotti, Agnieszka Patejuk, Guil-
herme Paulino-Passos, Angelika Peljak-Łapińska,
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A Languages

A.1 MAD-G training languages
Table 5: Details of languages used for MAD-G train-
ing.

code name family genus

ab Abkhazian Northwest Cau-
casian

-

ar Arabic Afro-Asiatic Semitic
ary Moroccan Arabic Afro-Asiatic Semitic
arz Egyptian Arabic Afro-Asiatic Semitic
atj Atikamekw Algic Algonquian
av Avar Nakh-

Daghestanian
Avar-Andic-Tsezic

ay Aymara Aymaran -
azb South Azerbaijani Turkic Southwestern
bo Tibetan Sino-Tibetan Bodic
bxr Buryat Mongolic -
cdo Min Dong Sino-Tibetan -
ce Chechen Nakh-

Daghestanian
Nakh

ceb Cebuano Austronesian Greater Central
Philippine

cv Chuvash Turkic Oghur
cy Welsh IE Celtic
el Greek IE Greek
en English IE Germanic
et Estonian Uralic Finnic
eu Basque Basque -
fa Persian IE Iranian
fi Finnish Uralic Finnic
fr French IE Romance
gn Guarani Tupian Tupi-Guarani
ha Hausa Afro-Asiatic West Chadic
hak Hakka Sino-Tibetan -
he Hebrew Afro-Asiatic Semitic
hu Hungarian Uralic Ugric
hy Armenian IE Armenian
id Indonesian Austronesian Malayo-Sumbawan
ig Igbo Niger-Congo Igboid
inh Ingush Nakh-

Daghestanian
Nakh

ja Japanese Japanese -
jv Javanese Austronesian Javanese
ka Georgian Kartvelian -
kab Kabyle Afro-Asiatic Berber
kbd Karbardian Circas-

sian
Northwest Cau-
casian

-

kbp Kabiye Niger-Congo Southern-Central
Gur

kk Kazakh Turkic Northwestern
km Khmer Austro-Asiatic Khmer
kn Kannada Dravidian Southern
ko Korean Korean -
kv Komi Uralic Permic
la Latin IE Latin
lbe Lak Nakh-

Daghestanian
Lak-Dargwa

lez Lezgian Nakh-
Daghestanian

Lezgic

ln Lingala Niger-Congo Bantoid
lo Lao Tai-Kadai -
mg Malagasy Austronesian Barito
mhr Meadow Mari Uralic Mari
min Minangkabau Austronesian Malayo-Sumbawan
ml Malayalam Dravidian Southern
mn Mongolian Mongolic -

code name family genus

mrj Hill Mari Uralic Mari
ms Malay Austronesian Malayo-Sumbawan
mt Maltese Afro-Asiatic Semitic
my Burmese Sino-Tibetan Burmese-Lolo
myv Erzya Uralic Mordvin
nah Nahuatl Uto-Aztecan Aztecan
new Newar Sino-Tibetan Mahakiranti
nso Northern Sotho Niger-Congo Bantoid
nv Navajo Na-Dene Athapaskan
om Oromo Afro-Asiatic Lowland East

Cushitic
qu Quechua Quechuan -
ru Russian IE Slavic
rw Kinyarwanda Niger-Congo Bantoid
sah Sakha Turkic Northeastern
sat Santali Austro-Asiatic Munda
se Northern Sami Uralic Sami
shn Shan Tai-Kadai -
smn Inari Sami Uralic Sami
sn Shona Niger-Congo Bantoid
so Somali Afro-Asiatic Lowland East

Cushitic
sq Albanian IE Albanian
su Sundanese Austronesian Malayo-Sumbawan
sv Swedish IE Germanic
sw Swahili Niger-Congo Bantoid
ta Tamil Dravidian Southern
tcy Tulu Dravidian Southern
te Telugu Dravidian South Central
th Thai Tai-Kadai -
tl Tagalog Austronesian Greater Central

Philippine
tr Turkish Turkic Southwestern
tt Tatar Turkic Northwestern
tyv Tuvan Turkic Northeastern
ug Uyghur Turkic Southeastern
uz Uzbek Turkic Southeastern
vi Vietnamese Austro-Asiatic Viet-Muong
war Waray-Waray Austronesian Greater Central

Philippine
wuu Wu Sino-Tibetan -
xal Kalmyk Mongolic -
xmf Mingrelian Kartvelian -
yo Yoruba Niger-Congo Defoid
za Zhuang Tai-Kadai -
zh Chinese Sino-Tibetan -
zu Zulu Niger-Congo Bantoid

A.2 Universal Dependencies Evaluation
Languages
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Table 6: Details of languages used for POS tagging and dependency parsing evaluation. unseen languages have
their language sub-group (mBERT-genus, MAD-G-genus or unseen-genus) specified.

code name group treebank family genus

af Afrikaans mBERT-seen UD_Afrikaans-AfriBooms IE Germanic
ajp South Levantine Arabic mBERT-genus UD_South_Levantine_Arabic-MADAR Afro-Asiatic Semitic
akk Akkadian mBERT-genus UD_Akkadian-RIAO Afro-Asiatic Semitic
apu Apurina unseen-genus UD_Apurina-UFPA Arawakan -
aqz Akuntsu unseen-genus UD_Akuntsu-TuDeT Tupian Tupari
ar Arabic mBERT-seen UD_Arabic-PUD Afro-Asiatic Semitic
bam Bambara unseen-genus UD_Bambara-CRB Mande -
be Belarusian mBERT-seen UD_Belarusian-HSE IE Slavic
bg Bulgarian mBERT-seen UD_Bulgarian-BTB IE Slavic
bho Bhojpuri mBERT-genus UD_Bhojpuri-BHTB IE Indic
br Breton mBERT-seen UD_Breton-KEB IE Celtic
bxr Buryat MAD-G-seen UD_Buryat-BDT Mongolic -
ca Catalan mBERT-seen UD_Catalan-AnCora IE Romance
ckt Chukchi unseen-genus UD_Chukchi-HSE Chukotko-Kamchatkan -
cs Czech mBERT-seen UD_Czech-PDT IE Slavic
cu Old Church Slavonic mBERT-genus UD_Old_Church_Slavonic-PROIEL IE Slavic
cy Welsh mBERT-seen UD_Welsh-CCG IE Celtic
da Danish mBERT-seen UD_Danish-DDT IE Germanic
de German mBERT-seen UD_German-HDT IE Germanic
el Greek mBERT-seen UD_Greek-GDT IE Greek
en English mBERT-seen UD_English-EWT IE Germanic
es Spanish mBERT-seen UD_Spanish-AnCora IE Romance
et Estonian mBERT-seen UD_Estonian-EDT Uralic Finnic
eu Basque mBERT-seen UD_Basque-BDT Basque -
fa Persian mBERT-seen UD_Persian-PerDT IE Iranian
fi Finnish mBERT-seen UD_Finnish-TDT Uralic Finnic
fo Faroese mBERT-genus UD_Faroese-FarPaHC IE Germanic
fr French mBERT-seen UD_French-GSD IE Romance
fro Old French mBERT-genus UD_Old_French-SRCMF IE Romance
ga Irish mBERT-seen UD_Irish-IDT IE Celtic
gd Scottish Gaelic mBERT-genus UD_Scottish_Gaelic-ARCOSG IE Celtic
gl Galician mBERT-seen UD_Galician-TreeGal IE Romance
got Gothic mBERT-genus UD_Gothic-PROIEL IE Germanic
gsw Swiss German mBERT-genus UD_Swiss_German-UZH IE Germanic
gun Mbya Guarani MAD-G-genus UD_Mbya_Guarani-Thomas Tupian Tupi-Guarani
gv Manx mBERT-genus UD_Manx-Cadhan IE Celtic
he Hebrew mBERT-seen UD_Hebrew-HTB Afro-Asiatic Semitic
hi Hindi mBERT-seen UD_Hindi-HDTB IE Indic
hr Croatian mBERT-seen UD_Croatian-SET IE Slavic
hsb Upper Sorbian mBERT-genus UD_Upper_Sorbian-UFAL IE Slavic
hu Hungarian mBERT-seen UD_Hungarian-Szeged Uralic Ugric
hy Armenian mBERT-seen UD_Armenian-ArmTDP IE Armenian
id Indonesian mBERT-seen UD_Indonesian-PUD Austronesian Malayo-Sumbawan
is Icelandic mBERT-seen UD_Icelandic-IcePaHC IE Germanic
it Italian mBERT-seen UD_Italian-ISDT IE Romance
ja Japanese mBERT-seen UD_Japanese-GSD Japanese -
kfm Khunsari mBERT-genus UD_Khunsari-AHA IE Iranian
kk Kazakh mBERT-seen UD_Kazakh-KTB Turkic Northwestern
kmr Kurmanji mBERT-genus UD_Kurmanji-MG IE Iranian
ko Korean mBERT-seen UD_Korean-GSD Korean -
koi Komi Permyak MAD-G-genus UD_Komi_Permyak-UH Uralic Permic
kpv Komi Zyrian MAD-G-seen UD_Komi_Zyrian-Lattice Uralic Permic
krl Karelian mBERT-genus UD_Karelian-KKPP Uralic Finnic
la Latin mBERT-seen UD_Latin-LLCT IE Latin
lt Lithuanian mBERT-seen UD_Lithuanian-ALKSNIS IE Baltic
lv Latvian mBERT-seen UD_Latvian-LVTB IE Baltic
lzh Classical Chinese mBERT-genus UD_Classical_Chinese-Kyoto Sino-Tibetan -
mdf Moksha MAD-G-genus UD_Moksha-JR Uralic Mordvin
mr Marathi mBERT-seen UD_Marathi-UFAL IE Indic
mt Maltese MAD-G-seen UD_Maltese-MUDT Afro-Asiatic Semitic
myu Munduruku unseen-genus UD_Munduruku-TuDeT Tupian Munduruku
myv Erzya MAD-G-seen UD_Erzya-JR Uralic Mordvin
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code name group treebank family genus

nl Dutch mBERT-seen UD_Dutch-Alpino IE Germanic
no Norwegian mBERT-seen UD_Norwegian-Bokmaal IE Germanic
nyg Nayini mBERT-genus UD_Nayini-AHA IE Iranian
olo Livvi mBERT-genus UD_Livvi-KKPP Uralic Finnic
orv Old East Slavic mBERT-genus UD_Old_Russian-RNC IE Slavic
pcm Naija unseen-genus UD_Naija-NSC Creole -
pl Polish mBERT-seen UD_Polish-PDB IE Slavic
pt Portuguese mBERT-seen UD_Portuguese-GSD IE Romance
ro Romanian mBERT-seen UD_Romanian-RRT IE Romance
ru Russian mBERT-seen UD_Russian-GSD IE Slavic
sa Sanskrit mBERT-genus UD_Sanskrit-UFAL IE Indic
sk Slovak mBERT-seen UD_Slovak-SNK IE Slavic
sl Slovenian mBERT-seen UD_Slovenian-SSJ IE Slavic
sme North Sami MAD-G-seen UD_North_Sami-Giella Uralic Sami
sms Skolt Sami MAD-G-genus UD_Skolt_Sami-Giellagas Uralic Sami
soj Soi mBERT-genus UD_Soi-AHA IE Iranian
sq Albanian mBERT-seen UD_Albanian-TSA IE Albanian
sr Serbian mBERT-seen UD_Serbian-SET IE Slavic
sv Swedish mBERT-seen UD_Swedish-Talbanken IE Germanic
ta Tamil mBERT-seen UD_Tamil-TTB Dravidian Southern
te Telugu mBERT-seen UD_Telugu-MTG Dravidian South Central
th Thai mBERT-seen UD_Thai-PUD Tai-Kadai -
tl Tagalog mBERT-seen UD_Tagalog-TRG Austronesian Greater Central Philippine
tr Turkish mBERT-seen UD_Turkish-GB Turkic Southwestern
ug Uyghur MAD-G-seen UD_Uyghur-UDT Turkic Southeastern
uk Ukrainian mBERT-seen UD_Ukrainian-IU IE Slavic
ur Urdu mBERT-seen UD_Urdu-UDTB IE Indic
vi Vietnamese mBERT-seen UD_Vietnamese-VTB Austro-Asiatic Viet-Muong
wbp Warlpiri unseen-genus UD_Warlpiri-UFAL Pama-Nyungan -
wo Wolof unseen-genus UD_Wolof-WTB Niger-Congo Northern Atlantic
yo Yoruba mBERT-seen UD_Yoruba-YTB Niger-Congo Defoid
yue Cantonese mBERT-genus UD_Cantonese-HK Sino-Tibetan -
zh Chinese mBERT-seen UD_Chinese-GSD Sino-Tibetan -

B Full Result Tables

B.1 Single-source Transfer
Table 7: Full per-language results for single-source zero-shot cross-lingual transfer experiments. POS tagging
results are given as accuracy scores, dependency parsing results are unlabeled/labeled attachment scores. G =
MAD-G, LS = MAD-G-LS, en = MAD-G-en, TA = TA-only, X = MAD-X, mB = mBERT-ft, R = XLM-R-ft.

language Part-of-speech tagging Dependency parsing

code group G LS en TA X mB R G LS en TA X mB R

af mBERT-seen 81.5 84.5 86.0 86.2 82.8 85.7 88.0 61.5/47.2 67.4/53.9 68.1/55.4 68.3/55.2 61.6/47.2 65.6/52.2 63.1/49.6
ajp mBERT-genus 55.8 58.0 56.4 58.8 56.0 54.9 63.0 48.7/27.9 48.4/28.6 48.9/30.7 50.4/33.0 50.4/31.1 46.0/28.6 26.0/13.2
akk mBERT-genus 41.1 38.9 36.7 33.9 30.4 33.2 30.0 26.4/5.3 25.9/5.5 22.6/4.4 23.6/4.3 23.9/3.5 20.3/3.2 19.8/3.4
apu unseen-genus 48.2 29.2 37.7 41.9 37.8 43.6 32.7 18.7/10.3 20.3/6.5 19.6/8.9 17.7/7.5 18.0/4.4 16.3/5.8 15.8/7.2
aqz unseen-genus 32.5 25.0 27.5 27.5 21.2 33.8 16.2 32.5/6.2 26.2/2.5 28.8/11.2 26.2/11.2 28.8/13.8 21.2/7.5 30.0/11.2
ar mBERT-seen 72.5 73.1 72.8 74.0 69.1 67.5 78.1 66.0/49.9 64.7/48.4 66.1/49.6 67.4/49.0 65.5/50.0 69.0/50.7 48.2/34.6
bam unseen-genus 38.0 36.0 36.6 37.6 30.8 33.6 25.5 26.8/8.2 26.7/7.1 30.8/10.6 30.2/9.5 28.9/6.6 30.4/9.6 21.3/5.8
be mBERT-seen 83.7 84.7 84.9 84.6 84.5 84.8 88.1 68.8/58.3 68.5/58.4 70.8/60.7 70.5/59.2 65.4/54.7 72.3/62.5 65.1/55.4
bg mBERT-seen 86.3 86.4 86.6 86.4 86.4 86.2 88.8 81.6/66.5 80.9/65.7 82.1/67.0 82.4/67.0 77.2/62.0 83.1/68.4 66.8/52.7
bho mBERT-genus 43.5 46.9 48.7 49.4 51.2 47.2 50.4 30.2/17.2 30.8/15.3 31.3/16.7 33.0/17.1 22.0/10.2 31.2/16.4 25.5/14.1
br mBERT-seen 65.1 66.3 69.7 71.5 61.9 65.8 58.3 63.3/42.5 64.7/43.8 70.9/52.1 71.3/52.6 60.1/35.6 66.2/47.0 44.0/27.2
bxr MAD-G-seen 68.6 66.3 58.3 59.6 70.5 55.9 59.5 41.4/22.3 39.4/19.7 39.3/19.4 41.6/19.9 38.3/23.9 41.2/19.4 35.9/17.1
ca mBERT-seen 86.7 86.4 86.6 86.8 87.3 87.0 88.6 75.5/63.4 75.1/62.8 76.5/64.7 76.5/63.9 72.3/60.0 78.1/66.4 74.4/63.1
ckt unseen-genus 30.7 24.8 23.5 23.6 23.2 22.6 30.3 24.9/12.0 20.3/9.1 18.5/10.9 20.4/10.3 21.0/12.4 17.6/9.1 32.4/17.6
cs mBERT-seen 83.6 84.3 84.4 84.8 84.3 84.9 86.8 72.3/58.6 73.4/60.1 74.8/61.7 74.7/60.1 71.5/58.3 75.2/61.9 60.3/48.1
cu mBERT-genus 34.1 33.8 35.4 37.1 34.7 30.3 45.0 31.9/12.9 30.4/11.2 32.3/13.9 32.6/14.3 27.3/9.4 28.6/12.2 31.5/15.6
cy mBERT-seen 64.9 64.7 64.4 64.7 59.6 60.7 66.4 63.9/45.9 64.6/45.8 64.8/45.3 65.6/45.5 57.7/33.1 62.3/40.1 46.1/33.0
da mBERT-seen 88.9 89.0 89.2 89.2 86.3 88.7 90.1 74.3/66.0 74.6/66.4 75.8/67.7 76.3/67.9 70.9/61.7 77.1/68.7 66.1/56.9
de mBERT-seen 84.8 85.8 85.7 86.1 86.5 85.7 87.6 71.2/61.8 75.4/66.9 76.7/68.3 76.8/68.6 75.3/66.7 77.4/69.1 62.3/53.7
el mBERT-seen 81.5 81.6 81.4 81.5 83.2 82.8 86.4 78.0/65.4 77.2/64.9 78.1/65.4 79.0/64.8 74.7/62.4 82.9/70.5 57.1/47.5
en mBERT-seen 96.3 96.3 96.3 96.3 96.4 96.7 97.3 89.6/87.0 89.4/86.8 89.6/87.0 89.8/87.0 89.7/87.1 91.8/89.4 59.8/53.3
es mBERT-seen 87.1 87.7 87.9 88.1 88.2 87.5 89.0 73.6/61.9 76.0/64.6 76.9/65.9 77.3/66.0 74.7/63.9 77.8/67.2 72.6/62.0
et mBERT-seen 83.4 82.9 83.1 83.3 86.4 81.4 87.8 64.1/46.6 62.7/45.2 64.8/47.1 64.9/46.3 65.0/49.0 64.0/44.8 63.1/45.4
eu mBERT-seen 69.8 69.0 69.0 68.9 73.4 67.4 71.1 52.6/33.4 51.3/31.7 52.7/33.4 54.0/33.8 53.8/35.3 51.2/31.6 41.8/24.6
fa mBERT-seen 73.4 73.5 68.5 69.3 69.4 66.9 76.3 47.3/34.8 46.8/33.3 43.7/31.7 44.2/31.6 42.9/31.1 42.5/29.9 31.7/22.0
fi mBERT-seen 83.8 83.7 83.9 84.2 71.6 82.2 88.2 66.4/50.9 65.1/49.6 66.5/51.1 66.4/50.2 51.1/32.7 68.0/51.1 61.4/45.9
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language Part-of-speech tagging Dependency parsing

code group G LS en TA X mB R G LS en TA X mB R

fo mBERT-genus 71.0 71.7 72.7 73.2 64.4 68.7 72.7 51.2/36.3 50.8/35.6 52.4/37.5 52.3/38.1 43.4/26.1 49.6/34.6 48.2/33.4
fr mBERT-seen 87.0 87.0 87.0 87.7 88.1 88.4 89.1 79.1/71.0 78.8/70.6 79.2/71.1 79.1/70.6 78.5/71.2 78.5/71.8 73.1/65.6
fro mBERT-genus 57.9 57.1 60.0 60.4 57.0 55.0 43.9 58.3/32.2 57.6/31.0 62.3/37.3 61.9/35.7 55.5/30.0 57.3/30.8 45.2/22.3
ga mBERT-seen 51.1 57.8 71.2 71.4 74.0 65.1 69.4 31.0/15.3 44.9/22.4 63.1/41.3 64.2/42.3 61.8/44.1 60.6/37.0 48.4/32.2
gd mBERT-genus 44.4 44.4 47.1 47.1 51.4 41.8 58.0 38.4/14.1 38.6/13.5 40.5/16.2 40.5/16.5 43.3/19.8 38.0/14.8 44.6/24.7
gl mBERT-seen 85.9 86.5 86.6 86.8 84.5 86.3 87.6 77.5/67.1 77.9/67.7 78.9/69.1 78.9/68.4 75.1/62.8 79.6/69.8 69.5/60.4
got mBERT-genus 23.6 24.7 22.1 22.0 21.2 18.7 11.6 27.3/8.7 28.3/5.8 28.3/8.5 28.9/9.0 27.5/6.1 26.6/7.0 22.4/6.2
gsw mBERT-genus 52.0 56.9 60.9 63.7 60.2 52.6 43.8 45.4/29.7 52.8/33.7 56.7/39.0 60.2/42.2 54.9/36.7 46.6/29.0 31.0/14.5
gun MAD-G-genus 36.2 35.2 30.9 30.0 30.0 30.9 26.0 20.7/6.4 20.5/6.2 14.6/5.2 17.0/6.3 12.5/3.2 11.5/3.3 12.0/4.1
gv mBERT-genus 32.7 31.4 33.1 36.0 35.1 32.4 26.9 32.8/8.4 31.3/6.3 31.0/7.4 30.8/7.2 37.7/11.9 28.7/6.1 22.6/4.0
he mBERT-seen 79.3 78.8 79.3 79.7 77.7 77.1 81.9 66.3/48.8 65.8/48.4 66.3/48.7 68.0/50.0 61.6/42.9 68.3/51.7 52.5/38.2
hi mBERT-seen 40.8 67.4 68.1 68.2 70.1 67.0 69.9 16.1/6.9 39.3/25.6 42.4/29.5 44.0/30.6 29.0/17.5 46.0/31.7 35.0/22.4
hr mBERT-seen 84.6 83.9 84.4 84.3 83.9 84.7 86.7 76.3/63.4 75.4/63.1 77.4/65.0 76.9/62.7 74.5/61.4 79.4/67.1 69.9/58.1
hsb mBERT-genus 69.1 70.8 71.8 72.2 69.2 69.9 71.9 46.4/33.2 49.8/35.4 53.3/39.3 53.2/38.5 50.3/35.5 51.4/37.6 44.0/29.4
hu mBERT-seen 81.4 81.5 81.5 82.1 82.3 81.8 85.1 71.0/51.6 70.3/50.4 70.9/51.4 71.1/50.8 68.3/49.1 73.0/51.9 62.7/44.7
hy mBERT-seen 77.1 77.1 76.9 77.4 79.3 75.1 86.0 55.7/36.5 55.3/35.5 56.3/36.8 58.2/37.4 54.9/35.9 58.2/37.5 56.1/37.1
id mBERT-seen 85.9 85.8 85.7 86.2 87.2 84.3 87.2 70.1/59.0 68.0/57.4 69.6/58.9 70.9/59.3 67.9/58.1 66.8/56.9 55.4/45.2
is mBERT-seen 76.0 77.3 78.4 78.8 77.6 76.0 84.3 53.4/36.6 55.1/38.5 56.8/40.5 57.2/40.5 56.7/39.9 57.5/40.7 54.3/39.7
it mBERT-seen 90.8 90.9 91.5 91.8 90.9 90.3 91.9 81.5/73.3 81.4/72.8 82.9/75.5 83.2/75.1 77.8/69.2 84.4/77.5 72.9/64.5
ja mBERT-seen 49.2 49.1 49.1 49.9 52.5 47.6 33.6 33.7/18.5 33.8/18.3 34.1/18.8 32.9/19.0 35.2/19.4 32.5/17.0 33.4/16.4
kfm mBERT-genus 33.8 36.5 35.1 37.8 39.2 43.2 41.9 21.6/4.1 17.6/5.4 23.0/12.2 25.7/6.8 18.9/5.4 21.6/4.1 27.0/13.5
kk mBERT-seen 77.4 77.2 76.9 76.8 70.9 75.9 81.1 59.3/40.0 58.4/38.3 59.2/40.0 60.4/40.8 48.4/27.2 59.5/37.4 43.2/25.9
kmr mBERT-genus 37.6 38.4 42.0 42.0 46.9 38.3 70.0 23.7/6.5 25.3/5.7 26.8/7.6 27.9/8.5 25.2/8.8 24.5/7.3 40.5/25.2
ko mBERT-seen 64.6 64.4 64.3 64.2 64.1 63.7 67.5 41.0/27.5 40.1/25.9 41.0/27.5 43.9/29.4 42.3/28.1 38.9/24.7 30.8/20.4
koi MAD-G-genus 44.2 43.9 41.1 41.4 40.3 41.8 48.2 33.1/17.5 26.9/14.9 28.2/12.6 32.7/15.9 27.1/11.0 26.9/9.5 28.2/13.5
kpv MAD-G-seen 54.8 55.2 34.0 33.4 56.3 34.5 40.8 39.3/19.1 38.1/18.3 23.6/8.6 24.5/8.9 42.1/21.5 22.8/7.4 26.0/10.7
krl mBERT-genus 65.0 66.6 66.6 67.7 53.9 62.4 68.0 48.2/25.4 46.0/23.9 47.9/27.5 45.8/25.4 37.4/15.5 44.7/23.6 40.4/21.8
la mBERT-seen 73.0 71.8 70.7 69.9 76.6 62.6 76.0 47.5/30.6 46.6/29.8 43.9/28.3 45.8/28.8 52.1/34.1 41.0/24.1 47.6/29.4
lt mBERT-seen 75.1 77.3 80.7 81.1 78.9 78.1 85.8 56.3/37.3 59.6/40.4 64.3/45.9 63.8/45.2 59.6/40.7 62.9/43.4 56.2/39.4
lv mBERT-seen 77.9 79.0 80.6 80.9 83.6 78.8 85.4 61.8/42.5 65.4/46.1 67.7/48.9 68.3/48.5 65.8/47.5 66.2/45.8 55.4/38.5
lzh mBERT-genus 50.0 50.4 50.3 49.7 48.7 49.0 27.7 46.7/27.4 47.6/27.2 48.7/29.8 48.0/28.3 45.6/27.6 49.3/30.2 25.4/9.9
mdf MAD-G-genus 47.2 48.5 46.7 48.9 46.4 47.1 46.2 34.0/17.6 34.9/17.8 32.2/17.4 34.2/17.6 31.8/13.7 33.9/14.3 28.2/12.6
mr mBERT-seen 71.8 73.0 74.2 72.4 60.7 70.6 80.4 48.8/28.4 48.1/26.7 48.1/28.2 46.8/27.7 25.2/14.8 44.2/26.0 40.0/23.8
mt MAD-G-seen 71.7 72.1 27.4 26.3 75.6 24.6 24.6 61.8/43.0 61.3/43.1 29.3/6.9 32.7/7.6 65.4/49.3 28.5/5.6 20.7/3.9
myu unseen-genus 21.4 15.5 17.3 19.9 18.8 25.1 17.3 24.0/10.3 26.9/9.2 26.6/14.4 21.8/12.2 19.9/11.4 28.4/16.6 31.7/19.6
myv MAD-G-seen 71.0 68.7 46.7 49.0 76.9 49.5 49.0 53.2/33.3 51.5/31.9 32.5/15.5 33.6/15.4 59.3/40.5 34.3/13.7 26.4/11.4
nl mBERT-seen 87.7 88.3 88.8 89.0 89.0 88.4 89.1 74.1/64.6 77.4/69.4 78.4/70.9 78.5/70.9 77.4/69.9 77.7/70.5 63.8/55.9
no mBERT-seen 89.9 90.4 90.7 90.9 90.9 90.5 92.1 79.6/73.4 79.9/73.7 80.8/74.9 81.0/74.9 81.3/75.1 82.3/75.8 65.7/57.5
nyg mBERT-genus 33.3 29.5 39.7 37.2 29.5 38.5 41.0 29.5/11.5 24.4/9.0 25.6/11.5 25.6/10.3 24.4/14.1 26.9/10.3 41.0/17.9
olo mBERT-genus 64.9 64.4 64.7 64.7 56.5 59.6 59.8 46.0/24.0 45.6/22.9 44.0/22.4 46.0/24.3 36.7/16.7 43.1/20.0 31.8/14.0
orv mBERT-genus 80.9 80.8 80.6 80.3 80.8 78.8 84.6 57.3/41.4 57.1/41.3 57.8/42.0 57.5/40.9 54.4/38.8 57.6/41.7 55.0/41.0
pcm unseen-genus 45.5 45.5 45.7 46.4 43.5 44.3 45.2 49.1/26.7 49.3/26.3 49.7/27.2 52.3/27.5 46.4/23.9 50.1/27.5 31.8/14.5
pl mBERT-seen 76.1 80.9 83.4 83.2 83.0 81.3 84.9 62.1/46.3 69.4/54.4 76.4/62.1 75.9/61.0 71.6/57.0 76.7/62.5 63.1/51.1
pt mBERT-seen 88.4 88.6 88.8 89.1 88.1 88.5 90.1 73.0/61.8 74.4/63.2 75.4/64.7 75.8/64.8 72.5/61.1 75.5/64.9 69.7/59.0
ro mBERT-seen 81.7 82.8 83.5 83.5 81.0 82.6 86.3 70.8/56.0 71.5/56.0 74.5/59.7 75.2/59.4 67.5/51.7 75.9/60.7 68.1/54.5
ru mBERT-seen 83.3 83.6 83.4 83.6 84.3 83.2 87.1 74.5/63.6 73.8/62.7 74.5/63.4 75.2/63.0 71.3/60.6 77.5/65.9 62.2/51.3
sa mBERT-genus 36.4 41.5 44.2 43.1 43.4 41.7 59.0 25.9/12.2 32.9/9.7 34.7/12.5 37.9/14.4 25.0/7.4 30.1/9.9 34.3/15.4
sk mBERT-seen 84.0 85.0 84.6 85.0 83.9 83.9 86.4 79.0/66.4 78.9/66.1 80.4/68.0 80.3/66.8 76.1/63.8 82.1/70.2 64.4/51.7
sl mBERT-seen 81.2 82.7 83.1 83.1 77.3 82.8 85.6 75.3/61.2 75.9/62.1 78.0/64.9 78.5/63.9 65.7/49.5 78.3/65.2 70.2/57.6
sme MAD-G-seen 71.1 68.5 41.6 42.1 75.8 39.0 33.3 48.6/32.7 46.2/29.3 24.3/9.0 23.9/8.6 50.4/33.5 22.9/6.5 20.6/7.0
sms MAD-G-genus 34.6 35.7 31.2 31.3 36.6 29.6 36.2 25.7/11.5 22.3/8.9 22.0/8.9 23.7/8.0 23.7/8.4 21.5/7.4 29.7/10.7
soj mBERT-genus 41.8 45.5 43.6 41.8 43.6 43.6 43.6 21.8/7.3 27.3/9.1 20.0/5.5 20.0/5.5 34.5/12.7 21.8/12.7 40.0/12.7
sq mBERT-seen 77.8 78.9 78.6 78.3 71.6 74.7 81.1 84.8/66.3 82.6/64.4 83.6/64.8 86.9/66.2 71.8/50.4 86.2/68.5 65.3/47.5
sr mBERT-seen 84.9 84.5 84.7 84.1 84.5 85.2 86.9 77.8/66.1 76.4/64.8 78.1/67.0 78.1/64.7 75.8/63.4 80.7/68.7 71.3/60.0
sv mBERT-seen 90.3 90.6 90.3 90.6 90.4 90.2 92.6 80.8/74.6 80.4/74.0 80.9/74.6 81.1/74.7 81.3/74.9 82.8/76.3 70.9/63.0
ta mBERT-seen 65.4 64.5 65.5 64.7 54.1 64.9 67.9 37.9/18.4 38.3/17.8 38.2/18.4 41.1/20.2 16.9/5.1 43.2/17.5 43.3/21.4
te mBERT-seen 75.6 75.7 76.0 75.7 67.0 76.0 85.4 70.3/51.6 64.1/46.6 70.9/53.8 73.0/53.4 43.0/29.8 59.5/42.4 53.3/34.5
th mBERT-seen 48.7 48.5 48.6 50.0 47.9 46.4 55.1 42.4/21.1 43.4/21.4 43.7/22.3 43.5/22.9 41.7/19.2 39.9/21.7 45.8/32.7
tl mBERT-seen 70.7 69.5 68.7 69.6 62.3 64.7 71.1 81.6/51.0 77.7/48.6 75.9/51.5 75.1/54.1 64.6/37.3 71.7/42.1 44.7/26.0
tr mBERT-seen 74.6 74.3 74.4 74.6 78.8 70.7 80.9 64.7/43.9 63.1/40.9 64.9/43.9 67.2/45.3 62.5/42.1 60.6/37.5 43.9/28.1
ug MAD-G-seen 58.0 60.4 35.1 34.4 57.9 28.9 73.5 33.3/17.4 29.7/13.6 16.5/6.5 21.1/7.9 36.0/16.2 17.1/7.1 50.3/30.2
uk mBERT-seen 82.2 83.1 83.4 82.7 83.8 83.5 85.8 73.0/60.6 72.6/60.3 73.8/61.6 73.1/59.9 69.9/57.4 75.7/63.0 66.7/54.4
ur mBERT-seen 49.9 61.2 62.2 63.5 58.7 60.4 65.6 20.6/10.1 35.7/21.4 36.7/22.7 36.7/22.6 21.3/10.7 35.2/21.9 37.9/24.1
vi mBERT-seen 63.5 63.1 63.6 62.9 63.9 60.3 63.2 55.8/39.0 54.9/37.7 55.9/38.9 55.7/38.6 54.9/36.6 53.5/37.3 30.1/18.7
wbp unseen-genus 25.8 27.4 32.8 32.2 33.1 37.9 22.6 24.2/8.9 26.8/10.8 32.5/13.7 30.9/14.3 15.9/4.1 47.1/17.2 44.6/19.7
wo unseen-genus 30.3 32.2 36.8 38.0 34.1 35.2 27.1 28.1/6.3 31.5/6.5 31.8/8.7 32.7/8.9 32.9/8.8 28.4/6.3 19.9/4.5
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language Part-of-speech tagging Dependency parsing

code group G LS en TA X mB R G LS en TA X mB R

yo mBERT-seen 64.2 63.3 60.3 59.4 56.3 47.7 26.6 46.4/28.0 45.3/26.6 40.9/23.5 41.7/24.0 37.0/19.8 37.2/19.0 11.9/2.4
yue mBERT-genus 62.1 62.5 61.8 63.3 62.4 63.3 53.0 45.4/27.5 44.8/27.4 45.1/27.9 46.2/27.9 45.4/28.3 45.2/28.4 32.0/18.8
zh mBERT-seen 70.9 70.9 70.6 68.9 69.8 67.4 48.3 56.9/35.4 56.3/34.7 57.1/35.5 56.9/35.5 55.8/34.9 59.4/38.0 47.9/26.5

B.2 Multi-source Transfer
Table 8: Full per-language results for multi-source zero-shot cross-lingual transfer experiments with 20 languages.
POS tagging results are given as accuracy scores, dependency parsing results are unlabeled/labeled attachment
scores. G = MAD-G, LS = MAD-G-LS, en = MAD-G-en, TA = TA-only, X = MAD-X, mB = mBERT-ft, R =
XLM-R-ft.

language Part-of-speech tagging Dependency parsing

code group G LS en TA X mB R G LS en TA X mB R

af mBERT-seen 85.0 86.9 87.4 88.2 83.2 88.9 89.6 66.8/54.1 68.8/55.9 69.4/57.3 69.2/57.3 66.0/53.2 71.8/59.4 67.8/55.1
ajp mBERT-genus 63.9 66.2 66.3 64.1 65.0 64.4 73.5 58.3/41.7 53.6/34.9 55.6/39.2 54.5/36.4 55.8/38.3 56.7/39.0 34.6/21.9
akk mBERT-genus 41.8 41.2 37.9 42.7 2.9 46.1 46.4 30.8/8.1 32.0/9.5 29.8/7.1 30.2/8.1 28.8/6.1 31.6/10.1 26.5/9.8
apu unseen-genus 37.1 44.5 41.7 45.4 34.5 45.5 50.4 21.0/17.2 27.1/12.1 23.8/14.4 24.9/13.5 19.8/10.2 24.5/9.1 26.3/11.0
aqz unseen-genus 30.0 27.5 20.0 30.0 22.5 22.5 32.5 35.0/15.0 27.5/10.0 23.8/10.0 25.0/5.0 33.8/12.5 30.0/8.8 27.5/16.2
ar mBERT-seen 80.1 79.9 80.2 80.1 80.1 80.3 80.6 76.2/66.1 76.4/66.4 76.7/66.7 76.7/66.5 76.4/66.7 76.8/66.7 55.3/46.2
bam unseen-genus 31.6 31.8 33.0 33.3 29.4 29.8 30.5 31.7/8.3 31.8/7.2 32.8/8.8 32.0/8.2 28.2/6.6 30.1/7.3 23.7/5.5
be mBERT-seen 88.8 89.2 89.4 89.4 88.7 90.8 92.1 78.2/71.3 78.9/72.2 79.4/72.5 78.9/72.3 79.0/71.7 82.5/74.6 76.4/67.8
bg mBERT-seen 93.5 94.1 93.9 93.6 91.3 93.2 95.3 85.2/75.3 85.4/75.4 85.2/75.3 85.9/75.7 85.6/75.4 87.6/78.5 70.9/61.1
bho mBERT-genus 59.3 61.4 61.3 61.5 61.6 61.8 63.3 44.5/27.5 48.9/33.7 44.4/28.1 48.6/32.7 46.9/31.9 51.9/35.6 32.0/21.1
br mBERT-seen 72.0 72.1 74.9 75.2 64.8 70.2 68.8 71.7/52.7 71.3/53.1 75.1/58.8 76.0/58.4 64.3/43.9 73.8/53.9 54.1/36.0
bxr MAD-G-seen 73.2 72.0 63.7 63.9 74.3 62.2 67.2 51.7/32.1 52.3/31.5 47.0/25.4 47.4/26.0 54.3/34.0 49.4/25.2 41.1/22.3
ca mBERT-seen 90.1 90.0 89.7 89.4 87.6 89.9 89.9 81.0/71.1 81.3/71.7 81.4/71.2 81.6/71.4 78.3/68.0 85.5/74.7 81.2/69.9
ckt unseen-genus 34.5 33.7 25.4 28.3 32.0 26.2 34.4 25.8/16.5 28.8/15.7 21.4/12.8 28.0/16.3 29.3/18.0 23.5/11.6 33.3/18.1
cs mBERT-seen 95.4 95.6 93.8 95.8 96.1 96.5 97.5 83.9/79.1 84.5/79.8 83.7/78.6 84.7/80.0 85.5/80.9 88.4/84.1 70.9/64.9
cu mBERT-genus 36.1 36.0 37.3 37.8 36.3 37.3 51.2 33.7/16.0 34.3/15.9 33.6/16.6 38.7/19.6 33.1/16.3 34.4/16.0 44.2/24.0
cy mBERT-seen 68.8 69.3 68.4 70.3 66.2 69.7 73.4 69.4/51.9 70.6/53.7 69.3/51.4 69.6/51.1 65.8/41.9 72.2/50.3 57.5/42.4
da mBERT-seen 90.3 90.1 90.5 90.8 86.8 91.2 92.9 72.7/65.3 72.8/65.6 73.3/66.1 73.4/66.3 70.9/62.5 77.2/68.6 67.4/58.4
de mBERT-seen 87.2 87.6 87.4 87.1 87.3 88.8 89.6 77.7/71.3 81.1/74.7 81.3/75.2 80.8/74.9 81.4/75.2 85.2/78.9 71.9/63.6
el mBERT-seen 96.4 96.5 96.4 96.6 97.0 97.6 98.2 89.4/86.3 89.6/86.7 89.3/86.3 89.6/86.7 90.3/87.5 93.3/90.7 63.7/59.4
en mBERT-seen 92.2 92.3 92.2 92.4 92.3 93.5 94.7 82.6/77.5 82.5/77.4 82.6/77.5 82.4/77.3 82.9/78.0 87.1/82.5 63.5/55.8
es mBERT-seen 91.7 91.8 91.9 91.7 85.5 92.3 92.3 79.7/71.0 81.4/73.2 81.6/73.4 81.9/73.4 82.2/73.0 85.4/76.4 78.8/69.8
et mBERT-seen 91.9 91.7 91.7 91.7 93.7 92.9 95.6 76.8/69.4 76.7/69.0 76.7/69.0 76.4/68.6 79.4/72.8 80.6/73.6 74.4/66.9
eu mBERT-seen 87.9 87.8 87.7 88.0 89.9 91.2 92.8 72.8/65.4 72.7/65.2 71.9/64.4 72.9/65.6 75.1/68.5 78.0/71.4 59.0/50.5
fa mBERT-seen 90.2 90.6 84.0 90.1 91.4 92.6 96.0 81.0/74.9 80.6/74.5 65.1/58.7 80.0/73.8 81.7/75.9 85.6/80.0 51.8/43.3
fi mBERT-seen 87.2 87.1 87.2 86.8 74.6 86.3 91.3 74.1/65.0 74.2/65.1 74.1/64.9 74.2/64.6 60.3/47.5 77.5/68.6 64.5/56.0
fo mBERT-genus 73.0 73.5 73.5 74.5 68.5 72.1 71.7 54.1/39.7 53.9/39.6 54.9/40.7 54.5/40.6 47.0/30.9 52.2/36.8 48.7/34.0
fr mBERT-seen 96.5 96.4 96.5 96.3 96.8 97.2 97.7 87.3/83.6 87.1/83.7 87.3/83.6 87.4/83.9 87.6/83.8 91.9/88.8 84.3/79.4
fro mBERT-genus 63.3 64.8 66.8 66.7 62.0 66.0 64.8 60.5/40.4 60.6/40.9 62.2/43.2 61.4/42.1 57.8/37.4 62.4/42.2 50.7/31.6
ga mBERT-seen 82.5 84.6 76.1 87.7 92.3 92.3 93.7 70.4/57.5 73.9/61.5 70.8/52.3 76.5/65.5 79.7/71.2 83.3/73.6 67.4/59.0
gd mBERT-genus 49.5 54.0 49.0 55.7 59.9 57.6 76.6 47.2/22.7 49.1/25.9 48.1/23.7 48.4/25.6 52.0/30.0 49.8/26.3 59.9/41.2
gl mBERT-seen 91.5 91.8 91.9 91.8 87.4 91.7 92.7 80.1/72.8 80.8/73.6 81.2/74.1 80.8/73.7 78.6/68.8 83.5/76.3 73.8/66.0
got mBERT-genus 34.4 34.6 38.0 37.7 42.1 34.6 34.8 29.0/13.4 34.2/13.3 32.2/13.2 31.2/11.3 31.9/12.6 34.0/12.7 27.5/9.6
gsw mBERT-genus 64.5 65.7 70.0 68.2 65.4 62.6 52.7 54.5/39.1 63.0/44.6 63.2/46.3 64.2/47.5 62.5/46.8 56.0/38.2 38.9/23.4
gun MAD-G-genus 41.4 40.7 37.8 38.4 31.5 39.8 34.5 30.4/10.5 31.3/10.7 26.6/9.0 27.2/9.0 25.8/7.4 29.2/9.2 23.8/8.6
gv mBERT-genus 42.2 42.4 42.0 45.8 46.3 45.2 45.2 40.6/14.9 39.8/15.1 38.7/13.2 39.8/14.5 44.2/19.6 41.6/15.4 35.5/11.1
he mBERT-seen 77.3 80.3 77.7 81.1 70.5 79.0 85.5 67.1/53.3 68.0/54.4 66.9/53.3 68.3/54.4 62.5/46.2 73.1/58.6 59.9/47.0
hi mBERT-seen 86.9 89.3 81.9 89.9 91.4 92.0 94.6 74.9/66.3 81.0/72.8 66.8/53.0 81.6/74.2 80.4/72.9 88.2/80.6 42.3/34.2
hr mBERT-seen 92.4 92.7 91.9 93.0 93.8 93.6 94.1 83.6/75.9 83.2/75.8 83.6/76.3 83.5/76.1 84.1/76.2 87.3/80.0 79.6/71.2
hsb mBERT-genus 77.7 78.2 78.7 79.1 77.7 78.4 79.9 56.5/47.7 57.8/49.4 60.1/51.1 59.6/51.5 59.3/50.6 61.3/51.9 58.3/48.5
hu mBERT-seen 93.8 93.8 93.8 93.8 94.1 95.9 97.0 82.6/76.4 82.5/76.3 82.5/76.2 81.7/75.5 83.8/77.4 88.4/82.4 69.4/61.8
hy mBERT-seen 90.9 90.7 90.8 91.1 92.2 93.6 95.7 77.5/68.6 78.0/69.4 77.2/68.3 76.9/67.8 79.4/71.4 83.4/75.3 73.2/65.1
id mBERT-seen 88.8 88.7 88.8 88.8 89.1 88.5 89.3 81.8/62.5 81.9/62.8 81.9/62.8 81.8/62.6 82.7/63.8 82.4/63.4 67.7/49.6
is mBERT-seen 78.8 80.3 80.8 81.2 79.2 79.0 84.5 57.1/41.9 58.3/43.4 59.3/44.3 58.4/43.5 58.9/44.0 58.3/42.5 54.9/40.2
it mBERT-seen 94.1 94.1 94.7 94.6 92.0 94.7 94.8 83.7/78.4 83.4/77.9 83.9/78.7 84.1/78.8 81.5/75.4 87.2/82.1 77.3/70.3
ja mBERT-seen 92.5 92.5 92.4 92.6 93.1 95.8 96.6 81.9/77.8 82.2/78.0 81.7/77.5 81.1/77.1 82.7/78.3 91.0/87.7 83.0/78.5
kfm mBERT-genus 43.2 43.2 40.5 41.9 41.9 51.4 41.9 40.5/20.3 37.8/21.6 40.5/18.9 37.8/18.9 29.7/14.9 28.4/14.9 17.6/9.5
kk mBERT-seen 82.6 82.7 82.4 82.7 73.7 82.9 86.6 67.5/55.4 68.3/55.7 67.3/55.1 68.1/56.4 61.9/47.9 70.9/57.2 49.9/38.5
kmr mBERT-genus 47.7 46.2 47.1 47.1 52.1 45.4 79.9 27.3/8.8 29.3/9.5 29.2/11.3 29.9/11.1 34.2/14.7 28.5/9.9 55.9/38.6
ko mBERT-seen 87.4 87.6 87.1 87.3 88.6 93.8 95.1 74.5/68.5 74.7/68.4 74.2/68.1 74.4/68.2 75.6/69.4 84.7/79.3 58.7/51.5
koi MAD-G-genus 48.2 48.4 45.3 47.1 44.5 47.7 52.3 36.1/20.6 33.8/18.5 29.7/14.9 37.7/20.7 31.7/15.9 32.1/16.4 34.0/19.2
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kpv MAD-G-seen 57.6 56.5 37.4 38.1 61.6 36.3 43.0 45.0/26.6 44.9/26.4 25.6/10.6 28.7/12.5 48.5/32.5 27.1/10.5 29.4/14.6
krl mBERT-genus 69.9 72.5 72.4 72.9 56.6 70.3 74.9 56.2/37.0 57.5/39.7 55.5/41.5 54.4/40.2 44.3/27.5 55.6/39.3 53.4/38.7
la mBERT-seen 95.4 94.7 93.6 94.9 96.1 97.5 98.1 74.3/70.1 74.5/70.3 72.1/67.0 74.1/69.5 76.6/72.6 84.1/80.8 79.4/74.5
lt mBERT-seen 83.3 84.7 85.7 86.2 82.3 84.9 90.5 69.9/56.7 72.1/59.8 73.1/61.8 73.3/60.5 72.7/59.8 74.4/60.6 64.5/52.7
lv mBERT-seen 89.0 89.4 88.1 89.8 92.3 91.8 94.6 77.0/69.6 78.1/70.8 77.5/68.6 78.5/71.1 81.7/75.3 82.0/75.4 63.4/55.6
lzh mBERT-genus 56.1 59.8 57.1 57.5 53.3 57.8 57.4 50.8/31.4 52.5/33.5 52.5/33.0 51.7/32.5 49.0/29.5 52.9/33.2 33.1/18.3
mdf MAD-G-genus 52.6 54.4 52.2 51.9 47.0 50.3 50.4 38.8/21.5 38.7/22.9 37.5/22.5 37.3/22.1 35.3/22.3 41.7/22.5 29.0/16.2
mr mBERT-seen 85.9 83.4 81.6 84.0 68.7 81.0 86.5 59.5/41.0 59.0/44.7 57.5/43.2 61.9/42.5 45.6/27.4 59.5/42.2 38.6/28.2
mt MAD-G-seen 80.2 78.8 35.4 37.1 80.4 35.7 35.9 68.6/54.4 68.1/54.0 37.1/10.8 39.0/12.1 73.1/60.4 37.4/9.8 35.9/8.0
myu unseen-genus 26.6 28.8 29.9 27.7 21.0 22.9 35.4 24.4/8.1 29.5/11.8 30.3/15.5 31.7/12.9 25.8/10.0 29.2/14.0 37.6/19.6
myv MAD-G-seen 73.2 71.2 51.8 51.7 78.5 51.3 50.9 63.2/46.8 62.1/43.7 35.9/19.0 36.3/19.1 67.3/52.0 40.0/19.7 29.0/15.6
nl mBERT-seen 87.9 88.4 88.8 89.0 88.3 89.2 89.3 77.8/69.8 79.7/72.7 81.0/74.3 80.1/73.6 80.5/73.3 84.5/77.4 70.2/62.3
no mBERT-seen 88.1 88.4 88.0 88.7 89.7 89.5 92.2 78.9/72.9 80.0/73.9 80.4/74.4 79.8/73.6 80.6/75.3 83.9/77.1 67.9/58.9
nyg mBERT-genus 42.3 41.0 47.4 46.2 19.2 64.1 52.6 33.3/20.5 30.8/19.2 32.1/20.5 34.6/20.5 24.4/15.4 35.9/26.9 25.6/16.7
olo mBERT-genus 70.2 72.8 70.5 71.2 58.9 68.6 71.8 57.7/39.5 57.9/41.0 54.4/37.5 54.2/37.9 43.4/27.1 57.1/39.5 47.7/31.7
orv mBERT-genus 87.4 87.5 87.2 87.7 87.1 87.1 91.3 65.1/53.0 65.0/52.9 64.8/53.0 65.2/53.0 64.9/52.4 68.4/56.0 66.8/55.1
pcm unseen-genus 46.3 45.8 45.9 45.7 42.4 45.2 45.7 48.8/25.9 49.3/26.5 49.8/26.5 50.4/26.7 45.0/20.6 50.3/26.3 35.9/16.5
pl mBERT-seen 86.3 88.3 89.2 89.8 90.2 90.7 92.5 75.5/64.4 79.8/68.3 83.2/73.5 83.5/73.2 84.2/73.7 87.3/77.0 72.2/61.6
pt mBERT-seen 90.4 90.9 90.4 90.3 88.7 90.6 91.0 79.9/70.7 80.8/71.8 80.9/71.9 81.2/72.0 79.8/69.6 83.9/74.5 76.2/66.5
ro mBERT-seen 87.0 88.5 88.2 88.8 84.9 89.6 91.6 79.6/67.0 80.8/67.8 80.8/68.6 81.4/69.3 77.6/64.2 83.5/70.5 77.3/64.4
ru mBERT-seen 88.6 88.9 88.7 89.2 84.8 90.3 92.6 82.6/75.2 82.5/74.9 82.8/75.3 82.4/75.0 80.9/73.2 87.6/80.3 72.4/64.3
sa mBERT-genus 49.6 48.7 50.6 49.9 45.1 44.1 63.0 28.4/18.3 42.4/19.6 39.8/22.0 43.8/19.6 42.3/17.1 45.6/19.6 30.9/17.5
sk mBERT-seen 92.9 93.3 92.1 94.1 94.5 94.4 95.3 87.7/82.4 88.4/83.6 87.7/82.5 88.6/84.1 88.9/84.5 90.8/86.4 72.9/66.3
sl mBERT-seen 89.1 90.1 90.1 90.6 83.0 90.6 93.1 84.1/75.4 84.2/75.8 84.8/76.5 85.5/77.0 78.7/66.4 87.6/79.1 81.1/71.2
sme MAD-G-seen 73.8 72.8 48.1 48.5 79.2 47.9 45.7 54.8/40.4 53.1/38.4 28.6/13.3 28.5/12.0 57.5/45.7 28.6/12.5 26.3/11.1
sms MAD-G-genus 37.4 41.8 34.9 36.3 46.8 36.5 45.8 29.4/13.6 28.1/12.6 24.7/10.8 30.7/13.5 30.0/16.0 26.8/11.1 32.8/15.6
soj mBERT-genus 52.7 45.5 47.3 47.3 52.7 56.4 43.6 27.3/12.7 34.5/20.0 38.2/23.6 30.9/18.2 50.9/34.5 29.1/18.2 18.2/14.5
sq mBERT-seen 82.5 83.6 81.8 82.2 73.0 82.2 87.2 87.4/72.7 86.4/71.6 86.9/72.0 88.7/74.7 77.4/59.1 89.9/76.5 70.3/52.8
sr mBERT-seen 92.9 93.3 93.0 93.6 95.1 94.9 94.1 84.5/77.1 84.0/76.6 84.4/77.5 84.2/76.9 85.2/77.4 87.8/79.7 81.1/72.3
sv mBERT-seen 91.5 91.6 91.5 91.3 91.9 92.0 95.1 79.1/72.5 78.6/72.3 79.0/72.4 78.7/72.2 79.5/73.2 81.7/75.0 71.8/63.6
ta mBERT-seen 64.4 64.9 63.7 66.2 38.9 66.3 74.2 55.8/39.6 57.0/39.1 55.9/38.9 56.4/38.4 36.8/20.0 61.6/41.2 56.3/39.3
te mBERT-seen 80.9 81.8 81.7 82.0 59.1 81.6 86.0 82.2/66.9 82.8/67.1 82.5/67.8 83.8/66.2 63.7/48.0 82.9/67.8 59.9/45.2
th mBERT-seen 51.4 50.4 50.6 51.4 38.0 55.5 71.9 52.6/27.8 53.0/26.3 53.1/28.3 52.7/26.7 50.4/26.0 56.3/29.1 64.6/43.1
tl mBERT-seen 73.8 73.6 74.1 74.4 67.0 67.0 76.0 81.1/54.1 80.7/54.2 75.6/51.2 78.2/53.7 68.8/41.8 80.9/54.1 47.4/29.7
tr mBERT-seen 83.6 84.1 83.6 83.6 86.2 83.6 88.1 76.1/64.7 76.6/65.0 76.1/64.4 76.3/64.1 77.7/67.4 78.5/66.2 48.3/37.2
ug MAD-G-seen 67.8 68.8 38.5 53.1 68.4 39.2 80.5 43.1/27.7 42.6/27.4 24.5/11.9 34.4/20.3 48.2/32.9 30.7/16.0 59.3/44.7
uk mBERT-seen 89.8 90.6 89.9 90.9 91.9 92.2 93.2 81.2/73.5 81.7/74.3 81.6/74.0 81.5/74.1 82.2/74.9 86.3/79.2 77.3/68.9
ur mBERT-seen 74.0 80.7 76.4 83.7 77.9 83.3 89.5 41.6/29.9 62.7/51.8 54.5/40.6 65.8/54.3 61.1/50.3 74.2/62.4 52.3/43.1
vi mBERT-seen 86.9 87.3 86.9 87.4 88.8 90.0 92.8 68.2/58.7 68.4/58.9 68.1/58.8 68.3/58.8 68.8/59.5 72.7/63.4 35.0/26.2
wbp unseen-genus 38.2 38.2 44.3 39.2 40.1 36.9 47.1 21.3/8.6 25.2/10.2 15.6/6.4 21.3/8.3 14.3/6.7 21.7/7.6 14.3/7.6
wo unseen-genus 40.6 39.4 42.6 41.9 41.4 39.8 38.1 37.0/11.8 39.5/12.5 37.2/13.4 37.5/12.7 36.5/11.1 38.5/12.2 31.6/9.5
yo mBERT-seen 69.3 65.4 60.4 61.2 56.2 53.9 29.2 51.9/33.8 52.4/32.4 48.7/29.5 48.1/28.9 44.5/24.1 45.6/23.5 20.6/5.4
yue mBERT-genus 73.2 73.0 72.2 69.7 72.0 74.7 81.7 47.7/31.4 48.1/31.8 47.5/31.0 47.0/30.3 49.0/31.9 50.5/33.7 42.5/26.3
zh mBERT-seen 91.0 91.0 90.9 90.9 91.5 94.7 95.3 74.2/68.6 74.4/68.6 74.1/68.2 73.8/68.4 74.8/69.1 83.6/79.0 73.8/67.4

B.3 Fine-tuning MAD-G-Initialized Adapters

Table 9: POS tagging accuracy scores on unseen languages when MAD-G-initialised (MAD-G-ft) or randomly
initialised (rand-ft) language adapters are fine-tuned by MLMing on varying amounts of unlabeled text, specif-
ically 1,000, 3,000, 10,000, 30,000 or 100,000 tokens.

1,000 3,000 10,000 30,000 100,000

language MAD-G-ft rand-ft MAD-G-ft rand-ft MAD-G-ft rand-ft MAD-G-ft rand-ft MAD-G-ft rand-ft

bam 31.9 31.7 31.8 27.9 31.4 30.8 31.7 30.8 32.7 31.8
bho 63.2 62.0 65.3 62.8 67.0 66.5 68.1 68.4 - -
cu 36.3 40.0 41.3 37.2 42.3 41.2 44.5 43.5 - -
fo 75.3 75.0 79.7 78.0 81.7 81.0 84.5 83.3 86.6 86.4
gd 54.3 56.0 57.5 54.9 60.6 58.1 64.5 64.1 67.3 67.9
got 32.3 33.7 34.9 36.1 33.8 33.0 - - - -
gv 50.4 45.6 52.0 47.2 61.3 58.7 68.8 65.8 74.1 74.2
hsb 79.5 80.1 81.3 81.9 86.0 85.8 87.9 87.6 89.7 88.8
koi 53.0 51.6 56.4 52.4 59.5 54.1 60.9 56.7 - -
mdf 55.8 53.3 60.9 57.9 66.1 61.2 - - - -
olo 71.8 71.8 74.9 74.9 77.8 78.7 80.2 79.9 82.5 83.1
sa 55.9 53.1 56.1 57.7 57.9 58.9 62.6 61.3 65.3 66.8
wo 43.4 47.4 45.4 48.4 55.0 56.1 62.6 60.3 69.8 69.8
yue 73.7 71.2 72.8 72.2 71.8 72.2 71.6 70.5 73.7 72.5
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Table 10: Dependency parsing unlabeled/labeled attachment scores on unseen languages when MAD-G-
initialized (MAD-G-ft) or randomly initialized (rand-ft) language adapters are fine-tuned by MLMing on
varying amounts of unlabeled text, specifically 1,000, 3,000, 10,000, 30,000 or 100,000 tokens.

1,000 3,000 10,000 30,000 100,000

language MAD-G-ft rand-ft MAD-G-ft rand-ft MAD-G-ft rand-ft MAD-G-ft rand-ft MAD-G-ft rand-ft

bam 32.1/8.7 29.1/7.8 31.3/8.2 29.0/4.8 31.4/8.4 29.7/7.8 31.1/9.0 29.3/7.8 31.0/9.3 28.9/5.5
bho 44.8/27.6 38.6/24.1 43.7/27.4 41.1/24.9 42.7/27.6 42.1/25.3 44.4/28.0 41.0/23.3 -/- -/-
cu 34.0/16.9 35.6/18.8 34.8/18.2 35.5/19.2 35.9/18.7 35.7/18.6 37.8/20.0 36.9/19.2 -/- -/-
fo 55.9/41.8 54.4/39.8 58.6/45.1 54.6/40.5 60.3/47.4 58.2/45.2 61.9/49.0 57.8/45.4 62.8/50.9 56.7/44.7
gd 50.5/25.9 45.2/22.4 51.7/27.4 48.8/24.5 55.0/31.9 52.2/28.2 59.8/37.0 53.3/29.4 61.0/40.8 53.7/32.3
got 29.7/13.2 23.8/14.1 29.6/13.7 27.0/7.4 29.5/14.0 27.5/6.9 -/- -/- -/- -/-
gv 42.7/19.8 36.8/13.3 44.6/22.3 38.0/16.5 51.4/31.6 45.0/25.4 53.2/36.7 47.1/30.4 57.1/41.9 50.5/35.0
hsb 61.4/51.2 60.2/49.8 66.2/55.5 63.6/53.3 71.3/61.1 64.3/54.4 73.8/64.4 69.6/60.6 75.7/67.2 71.3/62.8
koi 41.7/25.5 34.1/19.2 40.6/25.0 33.6/19.3 43.0/28.1 37.3/20.4 43.5/29.2 37.1/24.4 -/- -/-
mdf 41.2/25.0 33.3/23.2 46.4/30.2 42.1/26.8 50.7/36.1 48.2/32.4 -/- -/- -/- -/-
olo 61.7/43.9 56.9/40.9 63.4/46.1 61.6/43.8 66.8/50.9 60.1/43.4 68.1/54.7 65.5/51.4 69.8/56.5 64.3/50.5
sa 37.5/20.8 40.8/24.4 41.9/23.2 43.7/24.7 42.9/25.0 46.6/27.1 47.6/29.9 48.3/29.1 48.0/30.3 48.9/31.9
wo 37.6/12.5 34.8/13.3 40.4/14.5 39.3/16.2 44.3/19.1 42.8/19.6 49.9/24.9 51.8/25.4 55.0/31.9 53.0/29.5
yue 48.2/31.9 43.4/28.0 47.9/31.6 44.3/28.3 47.2/30.9 43.8/28.1 46.4/31.6 44.6/29.2 47.2/31.8 45.7/30.4


