@inproceedings{korner-etal-2021-casting-sentiment,
title = "Casting the Same Sentiment Classification Problem",
author = {K{\"o}rner, Erik and
Hakimi, Ahmad Dawar and
Heyer, Gerhard and
Potthast, Martin},
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.53",
doi = "10.18653/v1/2021.findings-emnlp.53",
pages = "584--590",
abstract = "We introduce and study a problem variant of sentiment analysis, namely the {``}same sentiment classification problem{''}, where, given a pair of texts, the task is to determine if they have the same sentiment, disregarding the actual sentiment polarity. Among other things, our goal is to enable a more topic-agnostic sentiment classification. We study the problem using the Yelp business review dataset, demonstrating how sentiment data needs to be prepared for this task, and then carry out sequence pair classification using the BERT language model. In a series of experiments, we achieve an accuracy above 83{\%} for category subsets across topics, and 89{\%} on average.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="korner-etal-2021-casting-sentiment">
<titleInfo>
<title>Casting the Same Sentiment Classification Problem</title>
</titleInfo>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Körner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmad</namePart>
<namePart type="given">Dawar</namePart>
<namePart type="family">Hakimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerhard</namePart>
<namePart type="family">Heyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Potthast</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce and study a problem variant of sentiment analysis, namely the “same sentiment classification problem”, where, given a pair of texts, the task is to determine if they have the same sentiment, disregarding the actual sentiment polarity. Among other things, our goal is to enable a more topic-agnostic sentiment classification. We study the problem using the Yelp business review dataset, demonstrating how sentiment data needs to be prepared for this task, and then carry out sequence pair classification using the BERT language model. In a series of experiments, we achieve an accuracy above 83% for category subsets across topics, and 89% on average.</abstract>
<identifier type="citekey">korner-etal-2021-casting-sentiment</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.53</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.53</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>584</start>
<end>590</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Casting the Same Sentiment Classification Problem
%A Körner, Erik
%A Hakimi, Ahmad Dawar
%A Heyer, Gerhard
%A Potthast, Martin
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F korner-etal-2021-casting-sentiment
%X We introduce and study a problem variant of sentiment analysis, namely the “same sentiment classification problem”, where, given a pair of texts, the task is to determine if they have the same sentiment, disregarding the actual sentiment polarity. Among other things, our goal is to enable a more topic-agnostic sentiment classification. We study the problem using the Yelp business review dataset, demonstrating how sentiment data needs to be prepared for this task, and then carry out sequence pair classification using the BERT language model. In a series of experiments, we achieve an accuracy above 83% for category subsets across topics, and 89% on average.
%R 10.18653/v1/2021.findings-emnlp.53
%U https://aclanthology.org/2021.findings-emnlp.53
%U https://doi.org/10.18653/v1/2021.findings-emnlp.53
%P 584-590
Markdown (Informal)
[Casting the Same Sentiment Classification Problem](https://aclanthology.org/2021.findings-emnlp.53) (Körner et al., Findings 2021)
ACL
- Erik Körner, Ahmad Dawar Hakimi, Gerhard Heyer, and Martin Potthast. 2021. Casting the Same Sentiment Classification Problem. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 584–590, Punta Cana, Dominican Republic. Association for Computational Linguistics.