@inproceedings{fajcik-etal-2021-r2-d2,
title = "{R2-D2}: A Modular Baseline for Open-Domain Question Answering",
author = "Fajcik, Martin and
Docekal, Martin and
Ondrej, Karel and
Smrz, Pavel",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.73",
doi = "10.18653/v1/2021.findings-emnlp.73",
pages = "854--870",
abstract = "This work presents a novel four-stage open-domain QA pipeline R2-D2 (Rank twice, reaD twice). The pipeline is composed of a retriever, passage reranker, extractive reader, generative reader and a mechanism that aggregates the final prediction from all system{'}s components. We demonstrate its strength across three open-domain QA datasets: NaturalQuestions, TriviaQA and EfficientQA, surpassing state-of-the-art on the first two. Our analysis demonstrates that: (i) combining extractive and generative reader yields absolute improvements up to 5 exact match and it is at least twice as effective as the posterior averaging ensemble of the same models with different parameters, (ii) the extractive reader with fewer parameters can match the performance of the generative reader on extractive QA datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fajcik-etal-2021-r2-d2">
<titleInfo>
<title>R2-D2: A Modular Baseline for Open-Domain Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Fajcik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Docekal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karel</namePart>
<namePart type="family">Ondrej</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavel</namePart>
<namePart type="family">Smrz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work presents a novel four-stage open-domain QA pipeline R2-D2 (Rank twice, reaD twice). The pipeline is composed of a retriever, passage reranker, extractive reader, generative reader and a mechanism that aggregates the final prediction from all system’s components. We demonstrate its strength across three open-domain QA datasets: NaturalQuestions, TriviaQA and EfficientQA, surpassing state-of-the-art on the first two. Our analysis demonstrates that: (i) combining extractive and generative reader yields absolute improvements up to 5 exact match and it is at least twice as effective as the posterior averaging ensemble of the same models with different parameters, (ii) the extractive reader with fewer parameters can match the performance of the generative reader on extractive QA datasets.</abstract>
<identifier type="citekey">fajcik-etal-2021-r2-d2</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.73</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.73</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>854</start>
<end>870</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T R2-D2: A Modular Baseline for Open-Domain Question Answering
%A Fajcik, Martin
%A Docekal, Martin
%A Ondrej, Karel
%A Smrz, Pavel
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F fajcik-etal-2021-r2-d2
%X This work presents a novel four-stage open-domain QA pipeline R2-D2 (Rank twice, reaD twice). The pipeline is composed of a retriever, passage reranker, extractive reader, generative reader and a mechanism that aggregates the final prediction from all system’s components. We demonstrate its strength across three open-domain QA datasets: NaturalQuestions, TriviaQA and EfficientQA, surpassing state-of-the-art on the first two. Our analysis demonstrates that: (i) combining extractive and generative reader yields absolute improvements up to 5 exact match and it is at least twice as effective as the posterior averaging ensemble of the same models with different parameters, (ii) the extractive reader with fewer parameters can match the performance of the generative reader on extractive QA datasets.
%R 10.18653/v1/2021.findings-emnlp.73
%U https://aclanthology.org/2021.findings-emnlp.73
%U https://doi.org/10.18653/v1/2021.findings-emnlp.73
%P 854-870
Markdown (Informal)
[R2-D2: A Modular Baseline for Open-Domain Question Answering](https://aclanthology.org/2021.findings-emnlp.73) (Fajcik et al., Findings 2021)
ACL