@inproceedings{vanmassenhove-monti-2021-gender,
title = "g{EN}der-{IT}: An Annotated {E}nglish-{I}talian Parallel Challenge Set for Cross-Linguistic Natural Gender Phenomena",
author = "Vanmassenhove, Eva and
Monti, Johanna",
editor = "Costa-jussa, Marta and
Gonen, Hila and
Hardmeier, Christian and
Webster, Kellie",
booktitle = "Proceedings of the 3rd Workshop on Gender Bias in Natural Language Processing",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.gebnlp-1.1",
doi = "10.18653/v1/2021.gebnlp-1.1",
pages = "1--7",
abstract = "Languages differ in terms of the absence or presence of gender features, the number of gender classes and whether and where gender features are explicitly marked. These cross-linguistic differences can lead to ambiguities that are difficult to resolve, especially for sentence-level MT systems. The identification of ambiguity and its subsequent resolution is a challenging task for which currently there aren{'}t any specific resources or challenge sets available. In this paper, we introduce gENder-IT, an English{--}Italian challenge set focusing on the resolution of natural gender phenomena by providing word-level gender tags on the English source side and multiple gender alternative translations, where needed, on the Italian target side.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vanmassenhove-monti-2021-gender">
<titleInfo>
<title>gENder-IT: An Annotated English-Italian Parallel Challenge Set for Cross-Linguistic Natural Gender Phenomena</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Vanmassenhove</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Monti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Gender Bias in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="family">Costa-jussa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hila</namePart>
<namePart type="family">Gonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kellie</namePart>
<namePart type="family">Webster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Languages differ in terms of the absence or presence of gender features, the number of gender classes and whether and where gender features are explicitly marked. These cross-linguistic differences can lead to ambiguities that are difficult to resolve, especially for sentence-level MT systems. The identification of ambiguity and its subsequent resolution is a challenging task for which currently there aren’t any specific resources or challenge sets available. In this paper, we introduce gENder-IT, an English–Italian challenge set focusing on the resolution of natural gender phenomena by providing word-level gender tags on the English source side and multiple gender alternative translations, where needed, on the Italian target side.</abstract>
<identifier type="citekey">vanmassenhove-monti-2021-gender</identifier>
<identifier type="doi">10.18653/v1/2021.gebnlp-1.1</identifier>
<location>
<url>https://aclanthology.org/2021.gebnlp-1.1</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>1</start>
<end>7</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T gENder-IT: An Annotated English-Italian Parallel Challenge Set for Cross-Linguistic Natural Gender Phenomena
%A Vanmassenhove, Eva
%A Monti, Johanna
%Y Costa-jussa, Marta
%Y Gonen, Hila
%Y Hardmeier, Christian
%Y Webster, Kellie
%S Proceedings of the 3rd Workshop on Gender Bias in Natural Language Processing
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F vanmassenhove-monti-2021-gender
%X Languages differ in terms of the absence or presence of gender features, the number of gender classes and whether and where gender features are explicitly marked. These cross-linguistic differences can lead to ambiguities that are difficult to resolve, especially for sentence-level MT systems. The identification of ambiguity and its subsequent resolution is a challenging task for which currently there aren’t any specific resources or challenge sets available. In this paper, we introduce gENder-IT, an English–Italian challenge set focusing on the resolution of natural gender phenomena by providing word-level gender tags on the English source side and multiple gender alternative translations, where needed, on the Italian target side.
%R 10.18653/v1/2021.gebnlp-1.1
%U https://aclanthology.org/2021.gebnlp-1.1
%U https://doi.org/10.18653/v1/2021.gebnlp-1.1
%P 1-7
Markdown (Informal)
[gENder-IT: An Annotated English-Italian Parallel Challenge Set for Cross-Linguistic Natural Gender Phenomena](https://aclanthology.org/2021.gebnlp-1.1) (Vanmassenhove & Monti, GeBNLP 2021)
ACL