@inproceedings{beken-fikri-etal-2021-semantic,
title = "Semantic Similarity Based Evaluation for Abstractive News Summarization",
author = "Beken Fikri, Figen and
Oflazer, Kemal and
Yanikoglu, Berrin",
editor = "Bosselut, Antoine and
Durmus, Esin and
Gangal, Varun Prashant and
Gehrmann, Sebastian and
Jernite, Yacine and
Perez-Beltrachini, Laura and
Shaikh, Samira and
Xu, Wei",
booktitle = "Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.gem-1.3",
doi = "10.18653/v1/2021.gem-1.3",
pages = "24--33",
abstract = "ROUGE is a widely used evaluation metric in text summarization. However, it is not suitable for the evaluation of abstractive summarization systems as it relies on lexical overlap between the gold standard and the generated summaries. This limitation becomes more apparent for agglutinative languages with very large vocabularies and high type/token ratios. In this paper, we present semantic similarity models for Turkish and apply them as evaluation metrics for an abstractive summarization task. To achieve this, we translated the English STSb dataset into Turkish and presented the first semantic textual similarity dataset for Turkish as well. We showed that our best similarity models have better alignment with average human judgments compared to ROUGE in both Pearson and Spearman correlations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="beken-fikri-etal-2021-semantic">
<titleInfo>
<title>Semantic Similarity Based Evaluation for Abstractive News Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Figen</namePart>
<namePart type="family">Beken Fikri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kemal</namePart>
<namePart type="family">Oflazer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Berrin</namePart>
<namePart type="family">Yanikoglu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Bosselut</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Esin</namePart>
<namePart type="family">Durmus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varun</namePart>
<namePart type="given">Prashant</namePart>
<namePart type="family">Gangal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Gehrmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yacine</namePart>
<namePart type="family">Jernite</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Perez-Beltrachini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samira</namePart>
<namePart type="family">Shaikh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>ROUGE is a widely used evaluation metric in text summarization. However, it is not suitable for the evaluation of abstractive summarization systems as it relies on lexical overlap between the gold standard and the generated summaries. This limitation becomes more apparent for agglutinative languages with very large vocabularies and high type/token ratios. In this paper, we present semantic similarity models for Turkish and apply them as evaluation metrics for an abstractive summarization task. To achieve this, we translated the English STSb dataset into Turkish and presented the first semantic textual similarity dataset for Turkish as well. We showed that our best similarity models have better alignment with average human judgments compared to ROUGE in both Pearson and Spearman correlations.</abstract>
<identifier type="citekey">beken-fikri-etal-2021-semantic</identifier>
<identifier type="doi">10.18653/v1/2021.gem-1.3</identifier>
<location>
<url>https://aclanthology.org/2021.gem-1.3</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>24</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Similarity Based Evaluation for Abstractive News Summarization
%A Beken Fikri, Figen
%A Oflazer, Kemal
%A Yanikoglu, Berrin
%Y Bosselut, Antoine
%Y Durmus, Esin
%Y Gangal, Varun Prashant
%Y Gehrmann, Sebastian
%Y Jernite, Yacine
%Y Perez-Beltrachini, Laura
%Y Shaikh, Samira
%Y Xu, Wei
%S Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F beken-fikri-etal-2021-semantic
%X ROUGE is a widely used evaluation metric in text summarization. However, it is not suitable for the evaluation of abstractive summarization systems as it relies on lexical overlap between the gold standard and the generated summaries. This limitation becomes more apparent for agglutinative languages with very large vocabularies and high type/token ratios. In this paper, we present semantic similarity models for Turkish and apply them as evaluation metrics for an abstractive summarization task. To achieve this, we translated the English STSb dataset into Turkish and presented the first semantic textual similarity dataset for Turkish as well. We showed that our best similarity models have better alignment with average human judgments compared to ROUGE in both Pearson and Spearman correlations.
%R 10.18653/v1/2021.gem-1.3
%U https://aclanthology.org/2021.gem-1.3
%U https://doi.org/10.18653/v1/2021.gem-1.3
%P 24-33
Markdown (Informal)
[Semantic Similarity Based Evaluation for Abstractive News Summarization](https://aclanthology.org/2021.gem-1.3) (Beken Fikri et al., GEM 2021)
ACL