@inproceedings{wang-etal-2021-evaluating,
title = "Evaluating Text Generation from Discourse Representation Structures",
author = "Wang, Chunliu and
van Noord, Rik and
Bisazza, Arianna and
Bos, Johan",
editor = "Bosselut, Antoine and
Durmus, Esin and
Gangal, Varun Prashant and
Gehrmann, Sebastian and
Jernite, Yacine and
Perez-Beltrachini, Laura and
Shaikh, Samira and
Xu, Wei",
booktitle = "Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.gem-1.8",
doi = "10.18653/v1/2021.gem-1.8",
pages = "73--83",
abstract = "We present an end-to-end neural approach to generate English sentences from formal meaning representations, Discourse Representation Structures (DRSs). We use a rather standard bi-LSTM sequence-to-sequence model, work with a linearized DRS input representation, and evaluate character-level and word-level decoders. We obtain very encouraging results in terms of reference-based automatic metrics such as BLEU. But because such metrics only evaluate the surface level of generated output, we develop a new metric, ROSE, that targets specific semantic phenomena. We do this with five DRS generation challenge sets focusing on tense, grammatical number, polarity, named entities and quantities. The aim of these challenge sets is to assess the neural generator{'}s systematicity and generalization to unseen inputs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2021-evaluating">
<titleInfo>
<title>Evaluating Text Generation from Discourse Representation Structures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chunliu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rik</namePart>
<namePart type="family">van Noord</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arianna</namePart>
<namePart type="family">Bisazza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johan</namePart>
<namePart type="family">Bos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Bosselut</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Esin</namePart>
<namePart type="family">Durmus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varun</namePart>
<namePart type="given">Prashant</namePart>
<namePart type="family">Gangal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Gehrmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yacine</namePart>
<namePart type="family">Jernite</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Perez-Beltrachini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samira</namePart>
<namePart type="family">Shaikh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present an end-to-end neural approach to generate English sentences from formal meaning representations, Discourse Representation Structures (DRSs). We use a rather standard bi-LSTM sequence-to-sequence model, work with a linearized DRS input representation, and evaluate character-level and word-level decoders. We obtain very encouraging results in terms of reference-based automatic metrics such as BLEU. But because such metrics only evaluate the surface level of generated output, we develop a new metric, ROSE, that targets specific semantic phenomena. We do this with five DRS generation challenge sets focusing on tense, grammatical number, polarity, named entities and quantities. The aim of these challenge sets is to assess the neural generator’s systematicity and generalization to unseen inputs.</abstract>
<identifier type="citekey">wang-etal-2021-evaluating</identifier>
<identifier type="doi">10.18653/v1/2021.gem-1.8</identifier>
<location>
<url>https://aclanthology.org/2021.gem-1.8</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>73</start>
<end>83</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluating Text Generation from Discourse Representation Structures
%A Wang, Chunliu
%A van Noord, Rik
%A Bisazza, Arianna
%A Bos, Johan
%Y Bosselut, Antoine
%Y Durmus, Esin
%Y Gangal, Varun Prashant
%Y Gehrmann, Sebastian
%Y Jernite, Yacine
%Y Perez-Beltrachini, Laura
%Y Shaikh, Samira
%Y Xu, Wei
%S Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F wang-etal-2021-evaluating
%X We present an end-to-end neural approach to generate English sentences from formal meaning representations, Discourse Representation Structures (DRSs). We use a rather standard bi-LSTM sequence-to-sequence model, work with a linearized DRS input representation, and evaluate character-level and word-level decoders. We obtain very encouraging results in terms of reference-based automatic metrics such as BLEU. But because such metrics only evaluate the surface level of generated output, we develop a new metric, ROSE, that targets specific semantic phenomena. We do this with five DRS generation challenge sets focusing on tense, grammatical number, polarity, named entities and quantities. The aim of these challenge sets is to assess the neural generator’s systematicity and generalization to unseen inputs.
%R 10.18653/v1/2021.gem-1.8
%U https://aclanthology.org/2021.gem-1.8
%U https://doi.org/10.18653/v1/2021.gem-1.8
%P 73-83
Markdown (Informal)
[Evaluating Text Generation from Discourse Representation Structures](https://aclanthology.org/2021.gem-1.8) (Wang et al., GEM 2021)
ACL