@inproceedings{gemes-recski-2021-tuw,
title = "{TUW}-{I}nf at {G}erm{E}val2021: Rule-based and Hybrid Methods for Detecting Toxic, Engaging, and Fact-Claiming Comments",
author = "G{\'e}mes, Kinga and
Recski, G{\'a}bor",
editor = "Risch, Julian and
Stoll, Anke and
Wilms, Lena and
Wiegand, Michael",
booktitle = "Proceedings of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments",
month = sep,
year = "2021",
address = "Duesseldorf, Germany",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.germeval-1.10",
pages = "69--75",
abstract = "This paper describes our methods submitted for the GermEval 2021 shared task on identifying toxic, engaging and fact-claiming comments in social media texts (Risch et al., 2021). We explore simple strategies for semi-automatic generation of rule-based systems with high precision and low recall, and use them to achieve slight overall improvements over a standard BERT-based classifier.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gemes-recski-2021-tuw">
<titleInfo>
<title>TUW-Inf at GermEval2021: Rule-based and Hybrid Methods for Detecting Toxic, Engaging, and Fact-Claiming Comments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kinga</namePart>
<namePart type="family">Gémes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gábor</namePart>
<namePart type="family">Recski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Risch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anke</namePart>
<namePart type="family">Stoll</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lena</namePart>
<namePart type="family">Wilms</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Wiegand</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Duesseldorf, Germany</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our methods submitted for the GermEval 2021 shared task on identifying toxic, engaging and fact-claiming comments in social media texts (Risch et al., 2021). We explore simple strategies for semi-automatic generation of rule-based systems with high precision and low recall, and use them to achieve slight overall improvements over a standard BERT-based classifier.</abstract>
<identifier type="citekey">gemes-recski-2021-tuw</identifier>
<location>
<url>https://aclanthology.org/2021.germeval-1.10</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>69</start>
<end>75</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TUW-Inf at GermEval2021: Rule-based and Hybrid Methods for Detecting Toxic, Engaging, and Fact-Claiming Comments
%A Gémes, Kinga
%A Recski, Gábor
%Y Risch, Julian
%Y Stoll, Anke
%Y Wilms, Lena
%Y Wiegand, Michael
%S Proceedings of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments
%D 2021
%8 September
%I Association for Computational Linguistics
%C Duesseldorf, Germany
%F gemes-recski-2021-tuw
%X This paper describes our methods submitted for the GermEval 2021 shared task on identifying toxic, engaging and fact-claiming comments in social media texts (Risch et al., 2021). We explore simple strategies for semi-automatic generation of rule-based systems with high precision and low recall, and use them to achieve slight overall improvements over a standard BERT-based classifier.
%U https://aclanthology.org/2021.germeval-1.10
%P 69-75
Markdown (Informal)
[TUW-Inf at GermEval2021: Rule-based and Hybrid Methods for Detecting Toxic, Engaging, and Fact-Claiming Comments](https://aclanthology.org/2021.germeval-1.10) (Gémes & Recski, GermEval 2021)
ACL