@inproceedings{tran-kruschwitz-2021-ur,
title = "ur-iw-hnt at {G}erm{E}val 2021: An Ensembling Strategy with Multiple {BERT} Models",
author = "Tran, Hoai Nam and
Kruschwitz, Udo",
editor = "Risch, Julian and
Stoll, Anke and
Wilms, Lena and
Wiegand, Michael",
booktitle = "Proceedings of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments",
month = sep,
year = "2021",
address = "Duesseldorf, Germany",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.germeval-1.12",
pages = "83--87",
abstract = "This paper describes our approach (ur-iw-hnt) for the Shared Task of GermEval2021 to identify toxic, engaging, and fact-claiming comments. We submitted three runs using an ensembling strategy by majority (hard) voting with multiple different BERT models of three different types: German-based, Twitter-based, and multilingual models. All ensemble models outperform single models, while BERTweet is the winner of all individual models in every subtask. Twitter-based models perform better than GermanBERT models, and multilingual models perform worse but by a small margin.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tran-kruschwitz-2021-ur">
<titleInfo>
<title>ur-iw-hnt at GermEval 2021: An Ensembling Strategy with Multiple BERT Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hoai</namePart>
<namePart type="given">Nam</namePart>
<namePart type="family">Tran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Udo</namePart>
<namePart type="family">Kruschwitz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Risch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anke</namePart>
<namePart type="family">Stoll</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lena</namePart>
<namePart type="family">Wilms</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Wiegand</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Duesseldorf, Germany</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our approach (ur-iw-hnt) for the Shared Task of GermEval2021 to identify toxic, engaging, and fact-claiming comments. We submitted three runs using an ensembling strategy by majority (hard) voting with multiple different BERT models of three different types: German-based, Twitter-based, and multilingual models. All ensemble models outperform single models, while BERTweet is the winner of all individual models in every subtask. Twitter-based models perform better than GermanBERT models, and multilingual models perform worse but by a small margin.</abstract>
<identifier type="citekey">tran-kruschwitz-2021-ur</identifier>
<location>
<url>https://aclanthology.org/2021.germeval-1.12</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>83</start>
<end>87</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ur-iw-hnt at GermEval 2021: An Ensembling Strategy with Multiple BERT Models
%A Tran, Hoai Nam
%A Kruschwitz, Udo
%Y Risch, Julian
%Y Stoll, Anke
%Y Wilms, Lena
%Y Wiegand, Michael
%S Proceedings of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments
%D 2021
%8 September
%I Association for Computational Linguistics
%C Duesseldorf, Germany
%F tran-kruschwitz-2021-ur
%X This paper describes our approach (ur-iw-hnt) for the Shared Task of GermEval2021 to identify toxic, engaging, and fact-claiming comments. We submitted three runs using an ensembling strategy by majority (hard) voting with multiple different BERT models of three different types: German-based, Twitter-based, and multilingual models. All ensemble models outperform single models, while BERTweet is the winner of all individual models in every subtask. Twitter-based models perform better than GermanBERT models, and multilingual models perform worse but by a small margin.
%U https://aclanthology.org/2021.germeval-1.12
%P 83-87
Markdown (Informal)
[ur-iw-hnt at GermEval 2021: An Ensembling Strategy with Multiple BERT Models](https://aclanthology.org/2021.germeval-1.12) (Tran & Kruschwitz, GermEval 2021)
ACL