











Approach

AttViz (this work)

BertViz (Vig, 2019) neat-vision NCRF++ (Yang and Zhang, 2018)

Visualization types
Open source
Language
Accessibility
Sequence view
Interactive
Aggregated view
Target probabilities
Compatible with PyTorch Transformers? (Wolf et al., 2020)
token-to-token attention

Online
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sequence, aggregates head, model, neuron

Python + Node.js

sequence
3

sequence

3 3

Python Python + Node.js Python
Jupyter notebooks Online script-based
3 3 3
3 3 7
7 7 7
7 3 7
3 7 7
3 7 3

Table 1: Comparison of different aspects of the attention visualization approaches.

Table 2: Aggregation schemes used in AttViz. The A
represents a real valued (attention) matrix.

Aggregate name
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Entropy(j) (ent)
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Figure 4: Visualization of all attention heads. The sixth
heads’s self attention is used to highlight the text. The
document was classified as a business-related, which
can be linked to high self attention at the “trillion” and
“uk” tokens. Compared to the first two examples (Fig-
ures 2 and 3), the network is less certain — in this ex-
ample, the business (orange) and politics (red) classes
were predicted with similar probabilities (orange and
red parts of the bar above visualized text).

able sequence lengths), as well as easier inspec-
tion of the models. We split the dataset into 60%
of the documents that were used to fine-tune the
BERT-base (Devlin et al., 2019) model, 20% for
validation and 20% for testing. The Nvidia Tesla
V100 GPU processor was used for these experi-
ments. The resulting model classified the whole
documents into five categories with 96% accuracy,
which is comparable with the state-of-the-art per-
formance (Trieu et al., 2017). For prediction and
visualisation, we used only short segments. The
fine-tuning of the BERT model follows examples
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given in the PyTorch-Transformers library (Wolf
et al., 2020). The best-performing hyper parame-
ter combination used 3 epochs with the sequence
length of 512 (other hyper parameters were left at
their default values). While we have used BERT,
similar explorations could be made for more recent
larger models such as XLNet (Yang et al., 2019)
that might could produce better classification accu-
racy.

The user interface of AttViz is displayed in Fig-
ures 2, 3, and 4. In the first example (Figure 3),
the user can observe the main view that consists of
two parts. The leftmost part shows (by id) individ-
ual self-attention vectors, along with visualization,
aggregation and file selection options. The file
selection indexes all examples contained in the in-
put (JSON) file. Attention vectors can be colored
with custom colors, as shown in the central (token-
value view). The user can observe that, for exam-
ple, the violet attention head (no. 5) is active, and
emphasizes tokens such as “development”, which
indicates a politics-related topic (as correctly clas-
sified). Here, the token (byte-pair encoded) space
is shown along with self-attention values for each
token. The attention vectors are shown below the
token space and aligned for direct inspection (and
correspondence).

In Figure 4, the user can observe the same text
segment as an attention series spanning the input to-
ken space. Again, note that tokens, such as “trillion”
and “uk” correspond to high values in a subset of
the attention heads, indicating their potential impor-
tance for the obtained classification. However, we
observed that only a few attention heads activate
with respect to individual tokens, indicating that
other attention heads are not focusing on the to-
kens themselves, but possibly on relations between
them. This is possible, and the attention matrices
contain such information (Vig, 2019). However,
as mentioned earlier, the study of token relations
is not the focus of this work. As self-attention in-



formation can be mapped across token sequences,
emphasizing tokens that are of relevance to the clas-
sification task at hand, we see AttViz as being the
most useful when exploring models used for text
classification tasks, such as hate speech detection
and sentiment analysis, where individual tokens
contain the key information for classification.

The example above shows how different atten-
tion heads detect different aspects of the sentence,
even at the single token (self-attention) level. The
user can observe that the next most probable cate-
gory for this topic was politics (red color), which
is indeed a more sensible classification than, for
instance, sports. The example shows how inter-
pretation of the attention can be coupled with the
model’s output for increased interpretability.

4 AttViz library: statistical analysis of
the attention space

In Section 3 we presented how the online version
of AttViz can be used for direct analysis of model
output (in the JSON format). Albeit suitable for
quick inspections, the online system has its limi-
tations such as poor support for computationally
more intensive types of analysis (in terms of wait-
ing times), and the lack of customized visualization
tools accessible in the Python ecosystem. To ad-
dress these aspects, we developed AttViz library
that offers more detailed analysis of a given neural
language model’s properties. The library operates
on the same JSON structures as the online version
and is compatible with the initial user input. We
demonstrate the analytical capabilities of our visu-
alization tools on three datasets. The BBC news
classification was already presented in Section 3.4.

4.1 Dissecting the token space

The first offline functionality is a barplot visualiza-
tion that offers insight into relevant aspects of the
attention distribution at token level. Whilst under-
standing the attention peaks is relevant for direct in-
spections (Section 3), the attention space of a given
token can be contextualized on the dataset level as
well. The AttViz library offers fast visualization
of the mean and spread of attention distributions,
simultaneously showing the attention peaks for in-
dividual tokens. We visualized the distribution for
three classification datasets (Figure 5): BBC news
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(5a), insults’ (5b), and hate speech comments (5¢)8.
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(a) Top 35 tokens in the BBC (b) Top 35 tokens in the in-
dataset. sults dataset.

tion value (max in the background)

(c) Top 35 tokens in the hate
speech dataset.

Figure 5: Visualization of the 35 most attended-to to-
kens for the three inspected data sets. Interestingly,
the attention peaks of tokens (maximum, in the back-
ground) all take high values, albeit lower-ranked tokens
are on average characterized by lower mean attention
values.

The proposed visualizations present top k tokens
according to their mean attention throughout the
whole dataset. It is interesting to observe, that the
insults and hate speech data sets are not completely
characterized by swear words or similar single-
token-like features. This potentially indicates that
the attention tries to detect interactions between the
byte-pair encoded tokens, even for data sets where
the attention could be focused on single tokens. It
is interesting to observe that the terms with the
highest attention are not necessarily keywords or
other tokens carrying large semantic meaning. Sim-
ilarly, the high maxima indicate that the emphasis
of the tokens is very contextual, and potentially not
as informative for global aggregation.

"https://www.kaggle.com/c/detecting-insults-in-social-
commentary/overview
8https://github.com/aitor-garcia-p/hate-speech-dataset



4.2 Visualization of attention head focus
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Figure 6: The distribution of tokens over individual at-
tention heads for the three datasets summarised with
word clouds.

Contemporary neural language model architec-
tures comprise multiple attention heads. These sep-
arate weight spaces capture distinct aspects of the
considered learning task. Even though the weight
spaces are easily accessible, it is not trivial to con-
vert the large amount of information into a quick-
to-inspect visualization. With the proposed visu-
alization, shown in Figure 6, we leverage word
clouds (Kaser and Lemire, 2007) to reveal human-
understandable patterns captured by separate atten-
tion heads and display this information in a com-
pact way.

5 Discussion and conclusions

As AttViz is an online and offline toolkit for at-
tention exploration, we discuss possible concerns
regarding its use, namely: privacy, memory and
performance overheads, and coverage. Privacy is a
potential concern for most web-based systems. As
currently AttViz does not employ any anonymiza-
tion strategy, private processing of the input data
is not guaranteed. While we intend to address this
issue in furture work, a private installation of the
tool can be done to get around this current limita-
tion. AttViz uses the users’ computing capabilities,
which means that large data sets may cause mem-
ory overheads when a large number of instances
is loaded (typically several million). Such situa-

tions are difficult to address with AttViz and similar
web-based tool, but users can filter instances before
using them in AttViz and explore a subset of the
data (e.g., only (in)correctly predicted instances, or
certain time slot of instances). Finally, AttViz is
focused on the exploration of self-attention. This is
not the only important aspect of a transformer neu-
ral network, but it is the one, where visualisation
techniques have not yet been sufficiently explored.
Similarly to the work of (Liu et al., 2018), we plan
to further explore potentially interesting relations
emerging from the attention matrices.

6 Availability

The software is available at https://github.com/
SkBlaz/attviz.
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