@inproceedings{robertson-etal-2021-covid,
title = "A {COVID}-19 news coverage mood map of {E}urope",
author = "Robertson, Frankie and
Lagus, Jarkko and
Kajava, Kaisla",
editor = "Toivonen, Hannu and
Boggia, Michele",
booktitle = "Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.hackashop-1.15",
pages = "110--115",
abstract = "We present a COVID-19 news dashboard which visualizes sentiment in pandemic news coverage in different languages across Europe. The dashboard shows analyses for positive/neutral/negative sentiment and moral sentiment for news articles across countries and languages. First we extract news articles from news-crawl. Then we use a pre-trained multilingual BERT model for sentiment analysis of news article headlines and a dictionary and word vectors -based method for moral sentiment analysis of news articles. The resulting dashboard gives a unified overview of news events on COVID-19 news overall sentiment, and the region and language of publication from the period starting from the beginning of January 2020 to the end of January 2021.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="robertson-etal-2021-covid">
<titleInfo>
<title>A COVID-19 news coverage mood map of Europe</title>
</titleInfo>
<name type="personal">
<namePart type="given">Frankie</namePart>
<namePart type="family">Robertson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jarkko</namePart>
<namePart type="family">Lagus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaisla</namePart>
<namePart type="family">Kajava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hannu</namePart>
<namePart type="family">Toivonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michele</namePart>
<namePart type="family">Boggia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a COVID-19 news dashboard which visualizes sentiment in pandemic news coverage in different languages across Europe. The dashboard shows analyses for positive/neutral/negative sentiment and moral sentiment for news articles across countries and languages. First we extract news articles from news-crawl. Then we use a pre-trained multilingual BERT model for sentiment analysis of news article headlines and a dictionary and word vectors -based method for moral sentiment analysis of news articles. The resulting dashboard gives a unified overview of news events on COVID-19 news overall sentiment, and the region and language of publication from the period starting from the beginning of January 2020 to the end of January 2021.</abstract>
<identifier type="citekey">robertson-etal-2021-covid</identifier>
<location>
<url>https://aclanthology.org/2021.hackashop-1.15</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>110</start>
<end>115</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A COVID-19 news coverage mood map of Europe
%A Robertson, Frankie
%A Lagus, Jarkko
%A Kajava, Kaisla
%Y Toivonen, Hannu
%Y Boggia, Michele
%S Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F robertson-etal-2021-covid
%X We present a COVID-19 news dashboard which visualizes sentiment in pandemic news coverage in different languages across Europe. The dashboard shows analyses for positive/neutral/negative sentiment and moral sentiment for news articles across countries and languages. First we extract news articles from news-crawl. Then we use a pre-trained multilingual BERT model for sentiment analysis of news article headlines and a dictionary and word vectors -based method for moral sentiment analysis of news articles. The resulting dashboard gives a unified overview of news events on COVID-19 news overall sentiment, and the region and language of publication from the period starting from the beginning of January 2020 to the end of January 2021.
%U https://aclanthology.org/2021.hackashop-1.15
%P 110-115
Markdown (Informal)
[A COVID-19 news coverage mood map of Europe](https://aclanthology.org/2021.hackashop-1.15) (Robertson et al., Hackashop 2021)
ACL
- Frankie Robertson, Jarkko Lagus, and Kaisla Kajava. 2021. A COVID-19 news coverage mood map of Europe. In Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pages 110–115, Online. Association for Computational Linguistics.