@inproceedings{martinc-etal-2021-embeddia,
title = "{EMBEDDIA} hackathon report: Automatic sentiment and viewpoint analysis of {S}lovenian news corpus on the topic of {LGBTIQ}+",
author = "Martinc, Matej and
Perger, Nina and
Pelicon, Andra{\v{z}} and
Ul{\v{c}}ar, Matej and
Vezovnik, Andreja and
Pollak, Senja",
editor = "Toivonen, Hannu and
Boggia, Michele",
booktitle = "Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.hackashop-1.17",
pages = "121--126",
abstract = "We conduct automatic sentiment and viewpoint analysis of the newly created Slovenian news corpus containing articles related to the topic of LGBTIQ+ by employing the state-of-the-art news sentiment classifier and a system for semantic change detection. The focus is on the differences in reporting between quality news media with long tradition and news media with financial and political connections to SDS, a Slovene right-wing political party. The results suggest that political affiliation of the media can affect the sentiment distribution of articles and the framing of specific LGBTIQ+ specific topics, such as same-sex marriage.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="martinc-etal-2021-embeddia">
<titleInfo>
<title>EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of Slovenian news corpus on the topic of LGBTIQ+</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matej</namePart>
<namePart type="family">Martinc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Perger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andraž</namePart>
<namePart type="family">Pelicon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matej</namePart>
<namePart type="family">Ulčar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreja</namePart>
<namePart type="family">Vezovnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Senja</namePart>
<namePart type="family">Pollak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hannu</namePart>
<namePart type="family">Toivonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michele</namePart>
<namePart type="family">Boggia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We conduct automatic sentiment and viewpoint analysis of the newly created Slovenian news corpus containing articles related to the topic of LGBTIQ+ by employing the state-of-the-art news sentiment classifier and a system for semantic change detection. The focus is on the differences in reporting between quality news media with long tradition and news media with financial and political connections to SDS, a Slovene right-wing political party. The results suggest that political affiliation of the media can affect the sentiment distribution of articles and the framing of specific LGBTIQ+ specific topics, such as same-sex marriage.</abstract>
<identifier type="citekey">martinc-etal-2021-embeddia</identifier>
<location>
<url>https://aclanthology.org/2021.hackashop-1.17</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>121</start>
<end>126</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of Slovenian news corpus on the topic of LGBTIQ+
%A Martinc, Matej
%A Perger, Nina
%A Pelicon, Andraž
%A Ulčar, Matej
%A Vezovnik, Andreja
%A Pollak, Senja
%Y Toivonen, Hannu
%Y Boggia, Michele
%S Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F martinc-etal-2021-embeddia
%X We conduct automatic sentiment and viewpoint analysis of the newly created Slovenian news corpus containing articles related to the topic of LGBTIQ+ by employing the state-of-the-art news sentiment classifier and a system for semantic change detection. The focus is on the differences in reporting between quality news media with long tradition and news media with financial and political connections to SDS, a Slovene right-wing political party. The results suggest that political affiliation of the media can affect the sentiment distribution of articles and the framing of specific LGBTIQ+ specific topics, such as same-sex marriage.
%U https://aclanthology.org/2021.hackashop-1.17
%P 121-126
Markdown (Informal)
[EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of Slovenian news corpus on the topic of LGBTIQ+](https://aclanthology.org/2021.hackashop-1.17) (Martinc et al., Hackashop 2021)
ACL