@inproceedings{korencic-etal-2021-block,
title = "To Block or not to Block: Experiments with Machine Learning for News Comment Moderation",
author = "Korencic, Damir and
Baris, Ipek and
Fernandez, Eugenia and
Leuschel, Katarina and
S{\'a}nchez Salido, Eva",
editor = "Toivonen, Hannu and
Boggia, Michele",
booktitle = "Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.hackashop-1.18/",
pages = "127--133",
abstract = "Today, news media organizations regularly engage with readers by enabling them to comment on news articles. This creates the need for comment moderation and removal of disallowed comments {--} a time-consuming task often performed by human moderators. In this paper we approach the problem of automatic news comment moderation as classification of comments into blocked and not blocked categories. We construct a novel dataset of annotated English comments, experiment with cross-lingual transfer of comment labels and evaluate several machine learning models on datasets of Croatian and Estonian news comments. Team name: SuperAdmin; Challenge: Detection of blocked comments; Tools/models: CroSloEn BERT, FinEst BERT, 24Sata comment dataset, Ekspress comment dataset."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="korencic-etal-2021-block">
<titleInfo>
<title>To Block or not to Block: Experiments with Machine Learning for News Comment Moderation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Damir</namePart>
<namePart type="family">Korencic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ipek</namePart>
<namePart type="family">Baris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eugenia</namePart>
<namePart type="family">Fernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katarina</namePart>
<namePart type="family">Leuschel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Sánchez Salido</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hannu</namePart>
<namePart type="family">Toivonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michele</namePart>
<namePart type="family">Boggia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Today, news media organizations regularly engage with readers by enabling them to comment on news articles. This creates the need for comment moderation and removal of disallowed comments – a time-consuming task often performed by human moderators. In this paper we approach the problem of automatic news comment moderation as classification of comments into blocked and not blocked categories. We construct a novel dataset of annotated English comments, experiment with cross-lingual transfer of comment labels and evaluate several machine learning models on datasets of Croatian and Estonian news comments. Team name: SuperAdmin; Challenge: Detection of blocked comments; Tools/models: CroSloEn BERT, FinEst BERT, 24Sata comment dataset, Ekspress comment dataset.</abstract>
<identifier type="citekey">korencic-etal-2021-block</identifier>
<location>
<url>https://aclanthology.org/2021.hackashop-1.18/</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>127</start>
<end>133</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T To Block or not to Block: Experiments with Machine Learning for News Comment Moderation
%A Korencic, Damir
%A Baris, Ipek
%A Fernandez, Eugenia
%A Leuschel, Katarina
%A Sánchez Salido, Eva
%Y Toivonen, Hannu
%Y Boggia, Michele
%S Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F korencic-etal-2021-block
%X Today, news media organizations regularly engage with readers by enabling them to comment on news articles. This creates the need for comment moderation and removal of disallowed comments – a time-consuming task often performed by human moderators. In this paper we approach the problem of automatic news comment moderation as classification of comments into blocked and not blocked categories. We construct a novel dataset of annotated English comments, experiment with cross-lingual transfer of comment labels and evaluate several machine learning models on datasets of Croatian and Estonian news comments. Team name: SuperAdmin; Challenge: Detection of blocked comments; Tools/models: CroSloEn BERT, FinEst BERT, 24Sata comment dataset, Ekspress comment dataset.
%U https://aclanthology.org/2021.hackashop-1.18/
%P 127-133
Markdown (Informal)
[To Block or not to Block: Experiments with Machine Learning for News Comment Moderation](https://aclanthology.org/2021.hackashop-1.18/) (Korencic et al., Hackashop 2021)
ACL