@inproceedings{koloski-etal-2021-extending,
title = "Extending Neural Keyword Extraction with {TF}-{IDF} tagset matching",
author = "Koloski, Boshko and
Pollak, Senja and
{\v{S}}krlj, Bla{\v{z}} and
Martinc, Matej",
editor = "Toivonen, Hannu and
Boggia, Michele",
booktitle = "Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.hackashop-1.4",
pages = "22--29",
abstract = "Keyword extraction is the task of identifying words (or multi-word expressions) that best describe a given document and serve in news portals to link articles of similar topics. In this work, we develop and evaluate our methods on four novel data sets covering less-represented, morphologically-rich languages in European news media industry (Croatian, Estonian, Latvian, and Russian). First, we perform evaluation of two supervised neural transformer-based methods, Transformer-based Neural Tagger for Keyword Identification (TNT-KID) and Bidirectional Encoder Representations from Transformers (BERT) with an additional Bidirectional Long Short-Term Memory Conditional Random Fields (BiLSTM CRF) classification head, and compare them to a baseline Term Frequency - Inverse Document Frequency (TF-IDF) based unsupervised approach. Next, we show that by combining the keywords retrieved by both neural transformer-based methods and extending the final set of keywords with an unsupervised TF-IDF based technique, we can drastically improve the recall of the system, making it appropriate for usage as a recommendation system in the media house environment.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koloski-etal-2021-extending">
<titleInfo>
<title>Extending Neural Keyword Extraction with TF-IDF tagset matching</title>
</titleInfo>
<name type="personal">
<namePart type="given">Boshko</namePart>
<namePart type="family">Koloski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Senja</namePart>
<namePart type="family">Pollak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Blaž</namePart>
<namePart type="family">Škrlj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matej</namePart>
<namePart type="family">Martinc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hannu</namePart>
<namePart type="family">Toivonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michele</namePart>
<namePart type="family">Boggia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Keyword extraction is the task of identifying words (or multi-word expressions) that best describe a given document and serve in news portals to link articles of similar topics. In this work, we develop and evaluate our methods on four novel data sets covering less-represented, morphologically-rich languages in European news media industry (Croatian, Estonian, Latvian, and Russian). First, we perform evaluation of two supervised neural transformer-based methods, Transformer-based Neural Tagger for Keyword Identification (TNT-KID) and Bidirectional Encoder Representations from Transformers (BERT) with an additional Bidirectional Long Short-Term Memory Conditional Random Fields (BiLSTM CRF) classification head, and compare them to a baseline Term Frequency - Inverse Document Frequency (TF-IDF) based unsupervised approach. Next, we show that by combining the keywords retrieved by both neural transformer-based methods and extending the final set of keywords with an unsupervised TF-IDF based technique, we can drastically improve the recall of the system, making it appropriate for usage as a recommendation system in the media house environment.</abstract>
<identifier type="citekey">koloski-etal-2021-extending</identifier>
<location>
<url>https://aclanthology.org/2021.hackashop-1.4</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>22</start>
<end>29</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extending Neural Keyword Extraction with TF-IDF tagset matching
%A Koloski, Boshko
%A Pollak, Senja
%A Škrlj, Blaž
%A Martinc, Matej
%Y Toivonen, Hannu
%Y Boggia, Michele
%S Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F koloski-etal-2021-extending
%X Keyword extraction is the task of identifying words (or multi-word expressions) that best describe a given document and serve in news portals to link articles of similar topics. In this work, we develop and evaluate our methods on four novel data sets covering less-represented, morphologically-rich languages in European news media industry (Croatian, Estonian, Latvian, and Russian). First, we perform evaluation of two supervised neural transformer-based methods, Transformer-based Neural Tagger for Keyword Identification (TNT-KID) and Bidirectional Encoder Representations from Transformers (BERT) with an additional Bidirectional Long Short-Term Memory Conditional Random Fields (BiLSTM CRF) classification head, and compare them to a baseline Term Frequency - Inverse Document Frequency (TF-IDF) based unsupervised approach. Next, we show that by combining the keywords retrieved by both neural transformer-based methods and extending the final set of keywords with an unsupervised TF-IDF based technique, we can drastically improve the recall of the system, making it appropriate for usage as a recommendation system in the media house environment.
%U https://aclanthology.org/2021.hackashop-1.4
%P 22-29
Markdown (Informal)
[Extending Neural Keyword Extraction with TF-IDF tagset matching](https://aclanthology.org/2021.hackashop-1.4) (Koloski et al., Hackashop 2021)
ACL