@inproceedings{pelicon-etal-2021-zero,
title = "Zero-shot Cross-lingual Content Filtering: Offensive Language and Hate Speech Detection",
author = "Pelicon, Andra{\v{z}} and
Shekhar, Ravi and
Martinc, Matej and
{\v{S}}krlj, Bla{\v{z}} and
Purver, Matthew and
Pollak, Senja",
editor = "Toivonen, Hannu and
Boggia, Michele",
booktitle = "Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.hackashop-1.5",
pages = "30--34",
abstract = "We present a system for zero-shot cross-lingual offensive language and hate speech classification. The system was trained on English datasets and tested on a task of detecting hate speech and offensive social media content in a number of languages without any additional training. Experiments show an impressive ability of both models to generalize from English to other languages. There is however an expected gap in performance between the tested cross-lingual models and the monolingual models. The best performing model (offensive content classifier) is available online as a REST API.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pelicon-etal-2021-zero">
<titleInfo>
<title>Zero-shot Cross-lingual Content Filtering: Offensive Language and Hate Speech Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andraž</namePart>
<namePart type="family">Pelicon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ravi</namePart>
<namePart type="family">Shekhar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matej</namePart>
<namePart type="family">Martinc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Blaž</namePart>
<namePart type="family">Škrlj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Senja</namePart>
<namePart type="family">Pollak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hannu</namePart>
<namePart type="family">Toivonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michele</namePart>
<namePart type="family">Boggia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a system for zero-shot cross-lingual offensive language and hate speech classification. The system was trained on English datasets and tested on a task of detecting hate speech and offensive social media content in a number of languages without any additional training. Experiments show an impressive ability of both models to generalize from English to other languages. There is however an expected gap in performance between the tested cross-lingual models and the monolingual models. The best performing model (offensive content classifier) is available online as a REST API.</abstract>
<identifier type="citekey">pelicon-etal-2021-zero</identifier>
<location>
<url>https://aclanthology.org/2021.hackashop-1.5</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>30</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Zero-shot Cross-lingual Content Filtering: Offensive Language and Hate Speech Detection
%A Pelicon, Andraž
%A Shekhar, Ravi
%A Martinc, Matej
%A Škrlj, Blaž
%A Purver, Matthew
%A Pollak, Senja
%Y Toivonen, Hannu
%Y Boggia, Michele
%S Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F pelicon-etal-2021-zero
%X We present a system for zero-shot cross-lingual offensive language and hate speech classification. The system was trained on English datasets and tested on a task of detecting hate speech and offensive social media content in a number of languages without any additional training. Experiments show an impressive ability of both models to generalize from English to other languages. There is however an expected gap in performance between the tested cross-lingual models and the monolingual models. The best performing model (offensive content classifier) is available online as a REST API.
%U https://aclanthology.org/2021.hackashop-1.5
%P 30-34
Markdown (Informal)
[Zero-shot Cross-lingual Content Filtering: Offensive Language and Hate Speech Detection](https://aclanthology.org/2021.hackashop-1.5) (Pelicon et al., Hackashop 2021)
ACL