@inproceedings{kim-etal-2021-distinguish,
title = "Can You Distinguish Truthful from Fake Reviews? User Analysis and Assistance Tool for Fake Review Detection",
author = "Kim, Jeonghwan and
Kang, Junmo and
Shin, Suwon and
Myaeng, Sung-Hyon",
editor = "Blodgett, Su Lin and
Madaio, Michael and
O'Connor, Brendan and
Wallach, Hanna and
Yang, Qian",
booktitle = "Proceedings of the First Workshop on Bridging Human{--}Computer Interaction and Natural Language Processing",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.hcinlp-1.9",
pages = "53--59",
abstract = "Customer reviews are useful in providing an indirect, secondhand experience of a product. People often use reviews written by other customers as a guideline prior to purchasing a product. Such behavior signifies the authenticity of reviews in e-commerce platforms. However, fake reviews are increasingly becoming a hassle for both consumers and product owners. To address this issue, we propose You Only Need Gold (YONG), an essential information mining tool for detecting fake reviews and augmenting user discretion. Our experimental results show the poor human performance on fake review detection, substantially improved user capability given our tool, and the ultimate need for user reliance on the tool.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2021-distinguish">
<titleInfo>
<title>Can You Distinguish Truthful from Fake Reviews? User Analysis and Assistance Tool for Fake Review Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeonghwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junmo</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suwon</namePart>
<namePart type="family">Shin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sung-Hyon</namePart>
<namePart type="family">Myaeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Bridging Human–Computer Interaction and Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Su</namePart>
<namePart type="given">Lin</namePart>
<namePart type="family">Blodgett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Madaio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hanna</namePart>
<namePart type="family">Wallach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qian</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Customer reviews are useful in providing an indirect, secondhand experience of a product. People often use reviews written by other customers as a guideline prior to purchasing a product. Such behavior signifies the authenticity of reviews in e-commerce platforms. However, fake reviews are increasingly becoming a hassle for both consumers and product owners. To address this issue, we propose You Only Need Gold (YONG), an essential information mining tool for detecting fake reviews and augmenting user discretion. Our experimental results show the poor human performance on fake review detection, substantially improved user capability given our tool, and the ultimate need for user reliance on the tool.</abstract>
<identifier type="citekey">kim-etal-2021-distinguish</identifier>
<location>
<url>https://aclanthology.org/2021.hcinlp-1.9</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>53</start>
<end>59</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can You Distinguish Truthful from Fake Reviews? User Analysis and Assistance Tool for Fake Review Detection
%A Kim, Jeonghwan
%A Kang, Junmo
%A Shin, Suwon
%A Myaeng, Sung-Hyon
%Y Blodgett, Su Lin
%Y Madaio, Michael
%Y O’Connor, Brendan
%Y Wallach, Hanna
%Y Yang, Qian
%S Proceedings of the First Workshop on Bridging Human–Computer Interaction and Natural Language Processing
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F kim-etal-2021-distinguish
%X Customer reviews are useful in providing an indirect, secondhand experience of a product. People often use reviews written by other customers as a guideline prior to purchasing a product. Such behavior signifies the authenticity of reviews in e-commerce platforms. However, fake reviews are increasingly becoming a hassle for both consumers and product owners. To address this issue, we propose You Only Need Gold (YONG), an essential information mining tool for detecting fake reviews and augmenting user discretion. Our experimental results show the poor human performance on fake review detection, substantially improved user capability given our tool, and the ultimate need for user reliance on the tool.
%U https://aclanthology.org/2021.hcinlp-1.9
%P 53-59
Markdown (Informal)
[Can You Distinguish Truthful from Fake Reviews? User Analysis and Assistance Tool for Fake Review Detection](https://aclanthology.org/2021.hcinlp-1.9) (Kim et al., HCINLP 2021)
ACL