@inproceedings{van-boven-bloem-2021-eliciting,
title = "Eliciting Explicit Knowledge From Domain Experts in Direct Intrinsic Evaluation of Word Embeddings for Specialized Domains",
author = "van Boven, Goya and
Bloem, Jelke",
editor = "Belz, Anya and
Agarwal, Shubham and
Graham, Yvette and
Reiter, Ehud and
Shimorina, Anastasia",
booktitle = "Proceedings of the Workshop on Human Evaluation of NLP Systems (HumEval)",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.humeval-1.12",
pages = "107--113",
abstract = "We evaluate the use of direct intrinsic word embedding evaluation tasks for specialized language. Our case study is philosophical text: human expert judgements on the relatedness of philosophical terms are elicited using a synonym detection task and a coherence task. Uniquely for our task, experts must rely on explicit knowledge and cannot use their linguistic intuition, which may differ from that of the philosopher. We find that inter-rater agreement rates are similar to those of more conventional semantic annotation tasks, suggesting that these tasks can be used to evaluate word embeddings of text types for which implicit knowledge may not suffice.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-boven-bloem-2021-eliciting">
<titleInfo>
<title>Eliciting Explicit Knowledge From Domain Experts in Direct Intrinsic Evaluation of Word Embeddings for Specialized Domains</title>
</titleInfo>
<name type="personal">
<namePart type="given">Goya</namePart>
<namePart type="family">van Boven</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jelke</namePart>
<namePart type="family">Bloem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Human Evaluation of NLP Systems (HumEval)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anya</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shubham</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anastasia</namePart>
<namePart type="family">Shimorina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We evaluate the use of direct intrinsic word embedding evaluation tasks for specialized language. Our case study is philosophical text: human expert judgements on the relatedness of philosophical terms are elicited using a synonym detection task and a coherence task. Uniquely for our task, experts must rely on explicit knowledge and cannot use their linguistic intuition, which may differ from that of the philosopher. We find that inter-rater agreement rates are similar to those of more conventional semantic annotation tasks, suggesting that these tasks can be used to evaluate word embeddings of text types for which implicit knowledge may not suffice.</abstract>
<identifier type="citekey">van-boven-bloem-2021-eliciting</identifier>
<location>
<url>https://aclanthology.org/2021.humeval-1.12</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>107</start>
<end>113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Eliciting Explicit Knowledge From Domain Experts in Direct Intrinsic Evaluation of Word Embeddings for Specialized Domains
%A van Boven, Goya
%A Bloem, Jelke
%Y Belz, Anya
%Y Agarwal, Shubham
%Y Graham, Yvette
%Y Reiter, Ehud
%Y Shimorina, Anastasia
%S Proceedings of the Workshop on Human Evaluation of NLP Systems (HumEval)
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F van-boven-bloem-2021-eliciting
%X We evaluate the use of direct intrinsic word embedding evaluation tasks for specialized language. Our case study is philosophical text: human expert judgements on the relatedness of philosophical terms are elicited using a synonym detection task and a coherence task. Uniquely for our task, experts must rely on explicit knowledge and cannot use their linguistic intuition, which may differ from that of the philosopher. We find that inter-rater agreement rates are similar to those of more conventional semantic annotation tasks, suggesting that these tasks can be used to evaluate word embeddings of text types for which implicit knowledge may not suffice.
%U https://aclanthology.org/2021.humeval-1.12
%P 107-113
Markdown (Informal)
[Eliciting Explicit Knowledge From Domain Experts in Direct Intrinsic Evaluation of Word Embeddings for Specialized Domains](https://aclanthology.org/2021.humeval-1.12) (van Boven & Bloem, HumEval 2021)
ACL