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Abstract

This work combines information about the di-
alogue history encoded by pre-trained mod-
els with a meaning representation of the cur-
rent system utterance to realize contextual lan-
guage generation in task-oriented dialogues.
We utilize the pre-trained multi-context Con-
veRT model for context representation in a
model trained from scratch; and leverage the
immediate preceding user utterance for con-
text generation in a model adapted from the
pre-trained GPT-2. Both experiments with
the MultiWOZ dataset show that contextual
information encoded by pre-trained models
improves the performance of response gener-
ation both in automatic metrics and human
evaluation. Our presented contextual gener-
ator enables higher variety of generated re-
sponses that fit better to the ongoing dialogue.
Analysing the context size shows that longer
context does not automatically lead to bet-
ter performance, but the immediate preceding
user utterance plays an essential role for con-
textual generation. In addition, we also pro-
pose a re-ranker for the GPT-based genera-
tion model. The experiments show that the re-
sponse selected by the re-ranker has a signifi-
cant improvement on automatic metrics.

1 Introduction

In a conversation, speakers are influenced by pre-
vious utterances and tend to adapt their way of
speaking to each other (Dušek and Jurcicek, 2016;
Reitter et al., 2006). Furthermore, generating the
responses that fit well to dialogue context facilitates
successful conversation and strengthens the user’s
impression of Spoken Dialogue Systems (SDSs).
Several previous works (Dušek and Jurcicek, 2016;
Kale and Rastogi, 2020; Sankar et al., 2019) have
explored the impact of previous dialogue informa-
tion on the generated language in task-oriented
dialogue. However, how to efficiently infuse the

MR: inform
(type=guesthouse;

stars=4)

Context: My friend
told me about a place

called the Carolina Bed
and Breakfast. Do you

know anything about it?

typical
NLG

contextual
NLG

It is a 4 star guesthouse. Yes, it is a guesthouse
with a 4 star rating.

Figure 1: An example of contextual NLG (red part)
compared with typical NLG (blue part) in our experi-
ments. (More examples with multi-turn context please
find in the Appendix)

dialogue context into a semantically controlled gen-
erator for improving the contextual interactive ex-
perience is still challenging. Such as, the contextual
generator proposed in Dušek and Jurcicek (2016)
has no big improvement without the help of an ad-
ditional re-ranker. The empirical study in Sankar
et al. (2019) demonstrated that both recurrent and
transformer-based seq2seq model can not effec-
tively consider previous dialogue history for gen-
eration. In this work, we propose two contextual
generators, which both utilize pre-trained models
to encode dialogue context. And the experiment
results show that context does matter in semanti-
cally controlled task-oriented Natural Language
Generation (NLG).

The function of NLG in task-oriented SDS is to
generate meaningful output in the form of natural
language with the guidance of meaning represen-
tation (MR). The MR is a formalism of response
semantics and generally represents a dialogue ac-
tion (DA), such as inform or request, along with
one or more slots and their values (See the MR in
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Figure 1). However, this typical NLG only takes
the input MR into account and has no clue on how
to adapt to the dialogue history. This results in
coarse and flat responses (see the blue part in Fig-
ure 1). To enable the contextual interaction in SDS,
task-oriented NLG should not only contain the de-
sired MR information, but also have access to the
dialogue history. The example shown in Figure 1
taken from our experiments: compared with non-
contextual generation, the response with context
guidance adapts better to the preceding dialogue
and is more like a sentence from a real human. In
addition, the contextual NLG models are prone to
generate more diverse responses.

In summary, the main contributions of this paper
are as follows:

• To leverage the contextual nature of the multi-
turn dialogue, we utilize the pre-trained multi-
context ConveRT (Henderson et al., 2020) to
encode dialogue history for the contextual
generator. These contextual embeddings are
then forwarded to the Semantically Controlled
LSTM (SC-LSTM) generator (Wen et al.,
2015). The ConveRT initialized SC-LSTM
is called CSC-LSTM for short in this paper.
With the powerful multi-context encoding of
ConveRT, we also analyse the impact of vari-
able context size on CSC-LSTM. To the best
of our knowledge, we are the first to utilize the
pre-trained conversational model ConveRT
for contextual generation in task-oriented dia-
logue system.

• We leverage only the immediate preced-
ing user utterance for contextual generation.
Adapted from GPT-2 (Radford et al., 2019),
the user utterance and DA guide the contextual
generation as context and semantic informa-
tion respectively. We call Contextually and
Semantically Conditioned GPT CSC-GPT
for short in this paper. The experiments of
GPT-based contextual model show that gen-
eration benefits from dialogue context, even
if only immediate preceding user utterance is
taken into account.

• We propose a BERT-based (Devlin et al.,
2019) Re-ranker (BERT-R) for the CSC-GPT
generator, to select system response that fit
better to the user utterance. Given the top 5
generations of CSC-GPT, several automatic

scores are regarded as contextual basis be-
tween user utterance and system response to
train on a multiple regression task adapted
from BERT. Experiments show that the re-
selected generation has a significant improve-
ment on the performance scores.

The remainder of this paper is structured as fol-
lows: Section 2 shows the related works of our
research. Section 3 introduces the dataset and the
automatic metric scores which are used in this work.
Section 4 describes our proposed three models:
CSC-LSTM, CSC-GPT and BERT-R, as well as
the experiment details. Section 5 shows the experi-
ment results of all models in automatic metrics and
human evaluation. The last Section 6 concludes
and outlines future research.

2 Related Works

For task-oriented NLG, semantically controlled
neural models play a significant role. Wen et al.
(2015) introduced a semantically conditioned
model by adding an additional semantic cell in
LSTM to control the DA, which is defined as the
combination of intent and slot-value pairs, for gen-
eration. Tseng et al. (2018) improved the RNN-
based generator by considering latent information
using the semantically conditional variational au-
toencoder architecture. As the major advantage
and superior performance of pre-trained LMs (De-
vlin et al., 2019; Radford et al., 2019), Peng et al.
(2020b) proposed a semantically controlled gener-
ation model based on GPT-2; Chen et al. (2020)
and Peng et al. (2020a) presented an end-to-end
task-oriented SDS based on the pre-trained GPT-2.
Even though there has been plenty of works on
semantically guided NLG, most approaches fail in
utilizing information of the preceding interaction.

Dušek and Jurcicek (2016) stood out as they ex-
tended the idea of NLG from MRs by adding one
preceding user utterance to their recurrent encoder.
However, we are more interested in the influence
of bigger context sizes in CSC-LSTM contextual
generation. And the model in Dušek and Jurcicek
(2016) was not able to show any improvement for
contextual generation without an additional n-gram
match re-ranker. However, our proposed contex-
tual generators outperform both the baselines even
without re-ranker and the re-ranker in our work can
further highly improve the generation performance
on automatic metrics. Sankar et al. (2019) made an
empirical study to understand how models use the
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available dialog history for generation and found
that both recurrent and transformer-based seq2seq
model can not consider previous dialogue history
effectively. However, the dialogue history in our
work is encoded by pre-trained models and exper-
iments show that the generation in task-oriented
dialogue benefits from dialogue history. Kale and
Rastogi (2020) also examined the role of context
and demonstrated that the generation benefits from
the dialogue history. While their approach highly
relies on manually pre-defined templates which are
costly to create, in this work, all responses are di-
rectly generated without the need of any templates.

3 Dataset and Automatic Metrics

In our work, the automatic metric scores are not
only used for performance evaluation, but also used
for the BERT-R training in Section 4.3. Hence, we
introduce the dataset and the automatic metrics
beforehand in this section.

3.1 MultiWOZ dataset
The original MultiWOZ (Budzianowski et al.,
2018) dataset is a fully-labeled collection of human-
human written conversations spanning over mul-
tiple domains and topics. It contains over 10, 000
dialogues spanning 8 domains, namely: Restaurant,
Hotel, Attraction, Taxi, Train, Hospital, Bus, and
Police. The test and validation sets contain 1, 000
examples each for performance comparison. The
MultiWOZ 2.1 (Eric et al., 2020) and MultiWOZ
2.2 (Zang et al., 2020) both fix some dialogue state
annotation errors and dialogue utterances, resulting
in an improved version of the original MultiWOZ.

The MultiWOZ 2.1 is used for evaluation of
CSC-LSTM in Section 4.1 in accordance with re-
lated work. The MultiWOZ 2.1 and 2.2 are both
used additionally for evaluating CSC-GPT and
BERT-R in Section 4.2 and 4.3.

3.2 Automatic metrics
The following metrics are used for performance
comparison in Section 5 and several are applied for
BERT-R training as target score in Section 4.3.

3.2.1 N-gram matching metrics
BLEU-4 is the 4-gram BLEU score (Papineni et al.,
2002), which is the most widely used metric score
for evaluating the performance of language genera-
tion and machine translation. In this work, BLEU-4
is computed for multiple values of n = (1, 2, 3, 4)
with weights (0.25, 0.25, 0.25, 0.25) respectively

and the scores are averaged geometrically. A
smoothing function is used to avoid that no n-gram
overlaps are found.

The target signal τBLEU-4 in Section 4.3 repre-
sents the BLEU-4 score between system generated
response and gold reference in BERT-R.

Meteor (Banerjee and Lavie, 2005) is a kind of
weighted F-score based on mapping unigrams and
also computes a penalty function for incorrect word
order. Lavie and Agarwal (2007) demonstrated that
Meteor score has high correlation with human rat-
ings.

The target signal τMeteor in Section 4.3 represents
the Meteor score between system generation and
gold reference in BERT-R.

3.2.2 Machine learned metric
BERTScore (Zhang et al., 2019) is a machine
learned automatic evaluation metric for text gener-
ation that has shown a high correlation with human
judgments. BERTScore leverages the pre-trained
contextual embeddings from variants of BERT (De-
vlin et al., 2019) and matches words in candidate
and reference sentences by cosine similarity. More-
over, BERTScore computes precision, recall, and
F1 measure1. Zhang et al. (2019) showed that the
Roberta (Liu et al., 2019) large model has the best-
performing results for English tasks. So the roberta-
large model2 is used for computing BERTScore in
this work.

The target signals τBERTpre , τBERTrec , τBERTf1 in
Section 4.3 represent the precision, recall and F1
of BERTScore between system response and gold
reference respectively in BERT-R.

3.2.3 Other metrics:
ConveRT cosine similarity: ConveRT (Hender-
son et al., 2020) is a light-weight conversational
model pre-trained on the large Reddit conversa-
tional corpus (Henderson et al., 2019). It provides
powerful representations for conversational data
and can be used as a response ranker by compar-
ing the cosine similarity between user utterance
and multiple responses. In this work, we not only
utilize the pre-trained ConveRT for context embed-
ding in CSC-LSTM, but also for a target score in
BERT-R.

The target signal τConveRT-cs in Section 4.3 means

1Only F1 score, which represents a reasonable balance
between recall and precision, is shown in Table 1, Table 2,
Table 4, Table 5 and Figure 2 for performance comparison.

2https://github.com/Tiiiger/bert score
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Figure 2: The curves of BLEU-4, Meteor, BERTScore
and Variation size over CSC-LSTM model with differ-
ent context size (the exact value of metrics please find
in Table 1) show similar tendency: the both ends of ev-
ery curve have better performance than the inner part.

the cosine similarity of ConveRT embedding be-
tween user utterance and system response in BERT-
R.

Variation size measures the variation of the gen-
erated system responses, i.e., how many different
realisations are generated for one DA on average.
The variation size results computed on the full Mul-
tiWOZ test data are shown in the left part of the
results column (/) while the right part shows the
variation size computed only over the instances of
the test data with DA that appear more than once,
i.e., where variation can actually occur.

4 The Proposed Models and Experiment
Details

In this section, our proposed models (two contex-
tual generators, one response re-ranker) and corre-
sponding experiment details are introduced.

4.1 ConveRT initialized SC-LSTM:
CSC-LSTM

We train CSC-LSTM3 on the basis of the SC-
LSTM (Wen et al., 2015), where a semantic con-
trol cell encodes DA into an one-hot embedding
to guide the task-oriented generation that is obliv-
ious about any dialogue history. In our proposed
CSC-LSTM, we apply the pre-trained multi-context
ConveRT4 for encoding the dialogue history and
the contextual embedding is forwarded to initialize
the SC-LSTM generator. Before initialization in
CSC-LSTM, a non-linear transformation5 is applied,
which is shown in Eq. 1, to project the ConveRT

3The architecture of CSC-LSTM is shown in Appendix.
4https://github.com/davidalami/ConveRT
5Using the same hidden size as the dimension of the Con-

veRT embedding, i.e., CSC-LSTM (hidden size 512) without
project function d0 in Eq. 1 results in worse performance.

embedding into the SC-LSTM decoder space:

h0 = tanh(WCe + b) . (1)

h0 ∈ Rdg is the SC-LSTM decoder initial recurrent
state, Ce ∈ Rdc is the ConveRT context embedding
and W ∈ Rdg×dc projects the context level embed-
ding into the decoder space. The W and b are
learnable parameters during the CSC-LSTM train-
ing.

Experiment details of CSC-LSTM: For CSC-
LSTM, the SC-LSTM will be used as baseline with-
out additional context information. This means, for
each utterance generation, the hidden state is ini-
tialized with zeros in SC-LSTM. The MultiWOZ
2.1 (Eric et al., 2020) dataset is used for SC-LSTM
and CSC-LSTM generation models.

The multi-context ConveRT embedding dimen-
sionality is 512, hence, the dc in Eq. 1 is 512 for
CSC-LSTM training. In order to ensure a fair com-
parison, we set the same hyper-parameters for SC-
LSTM and CSC-LSTM: the hidden size to 300 (the
dg in Eq. 1), the learning rate to 5e−3, the batch
size to 128 and beam search decoding in inference
with beam size 10. Early stopping and cross en-
tropy loss are applied during the SC-LSTM and
CSC-LSTM training. The responses in SC-LSTM
and CSC-LSTM are delexicalised text where the
slot values are replaced by its corresponding slot
tokens.

Context size analysis of CSC-LSTM: The pre-
trained multi-context ConveRT does not only en-
code the immediate preceding user utterance but
in addition a maximum of 10 previous dialogue
sentences, i.e., 5 user utterances and 5 system re-
sponses (5u5s). To analyse the effect of this con-
text on the performance of the CSC-LSTM, multi-
ple models with different context sizes have been
trained. And we plot the trend and show exact
values of all metric scores in Figure 2 and Table
1 respectively. The 0u0s in Figure 2 and Table
1 means only immediate preceding user utterance
without extra context is taken into account for con-
textual generator CSC-LSTM training.

4.2 Contextually and Semantically
Conditioned GPT: CSC-GPT

In addition to the contextual generator trained from
scratch in Section 4.1, we also explore contextual
generation adapted from a pre-trained LM model
in this section.
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context size 0u0s 1u1s 2u2s 3u3s 4u4s 5u5s

BLEU-4 (%) 29.59 29.76 29.68 29.50 29.46 29.79
Meteor (%) 51.29 51.11 51.21 50.80 50.92 51.22
BERTScore F1 (%) 59.17 59.24 59.02 59.14 59.06 59.13
Variation size 2.05 2.07 2.01 1.99 2.06 2.11

Table 1: The results for BLEU, Meteor, BERTScore and Variation size of CSC-LSTM model with variant context
size (best results are marked with bold font and worst results are marked with underline) show that the best models
exist in 0u0s, 1u1s and 5u5s, while the worst models exist in 2u2s, 3u3s and 4u4s.

We train CSC-GPT6 on the basis of the pre-
trained GPT-2 (Radford et al., 2019). It adopts
the generic Transformers (Vaswani et al., 2017).
Peng et al. (2020b) already proposed the SC-GPT
model, which was continuously training the GPT-2
on (DA, system response) pairs. However, no con-
text information was taken into account in SC-GPT
for dialogue response generation. In our proposed
CSC-GPT, we leverage the extra user context be-
yond semantic information to guide the generation
process. This means, (user utterance, DA, sys-
tem response) MultiWOZ triplets are continuously
trained on the pre-trained GPT-2 model for contex-
tual generation. Given the extra context size analy-
sis result of CSC-LSTM model (shown in 5.1) and
GPU memory limitation for training the pre-trained
LM, only the immediate preceding user utterance
is used as context information in the CSC-GPT7.

In this work, we tackle the generation problem
using conditional LM. Given the dialogue dataset
D = {(un, dn, rn)}Nn=1 with N samples, the goal
is to build a statistical model parameterized by θ to
characterize pθ(r|u, d), which can be written as the
product of a series of conditional probabilities.

pθ(r|u, d) =
T∏
t=1

pθ(rt|r<t, u, d) (2)

where r<t indicates all tokens before t. The u
represents user utterance; d means the system
DA and r is the system response which includes
(r1, r2, ...rt, ...) tokens with length T .

Experiment details of CSC-GPT: In order to
achieve a robust performance comparison, two
datasets, namely MultiWOZ 2.1 and MultiWOZ
2.2, are used in SC-GPT and CSC-GPT. During

6The architecture of CSC-GPT is shown in Figure 4 in
Appendix

7In the Appendix, we also conduct the CSC-GPT with
different context size: CSC-GPT (0u0s) and CSC-GPT (1u1s).
The performance comparison in Table 4 supports the extra
context size analysis in CSC-LSTM: longer dialogue context
can not linearly improve the generation performance.

training, the batch size is 16, the maximal epoch
is 10, the learning rate is 5e−5 and early stopping
is used. During decoding, we use the top-k (Fan
et al., 2018) and nucleus sampling (top-p) (Holtz-
man et al., 2019) decoding algorithms with top-k
equal to 5 and top-p equal to 0.9. This means, the
next token distribution is filtered to keep maximal
top 5 tokens with highest probability and the cumu-
lative probability above a 0.9 threshold. Due to the
computational expense of running large SC-GPT
and CSC-GPT model, only the top 5 responses are
generated.

4.3 BERT Re-ranker: BERT-R

In this paper, we propose a BERT (Devlin et al.,
2019) Re-ranker (BERT-R) to select the top gen-
eration which is more similar to human sentence
and better fits to user context. As the generated
responses of the CSC-LSTM are delexicalized and
have less variability compared with the CSC-GPT,
we only apply the re-ranker to the CSC-GPT model.
Adapted from pre-trained BERT, the BERT-R is
continually trained with task-oriented dialogue data
and then fine-tuned on a multiple regression task,
where the model learns the relationship between
user utterance and system response from the vari-
ous regression targets defined by multiple metrics
scores.

There are two steps in our proposed BERT-R:
masked LM pre-training and multiple regression
fine-tuning. And the BERT-base-uncased8 model
with 12 layers, 768 hidden units and 12 heads is
used in this work.

Masked LM Pre-training The original BERT
was pre-trained with the BooksCorpus (Zhu et al.,
2015) and English Wikipedia. In order to better
generalize to task-oriented dialogues, we continu-
ally train the BERT model with a dialogue dataset:
DSTC8 (Rastogi et al., 2020), which is a schema-
guided dialogue dataset and consists of over 20k

8https://huggingface.co/bert-base-uncased
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annotated multi-domain, task-oriented conversa-
tions between a human and a virtual assistant. And
Sellam et al. (2020) and Peng et al. (2020b) both
continually trained with task-specific data based
on the pre-trained LMs for better generalisation.
Similar to the masked LM training of the original
BERT, only 15% tokens are randomly masked for
prediction with cross entropy loss.

Multiple Regression Fine-tuning The ideal
generated response should be close to human com-
munication and relevant to preceding user utter-
ance at the same time. The general idea for BERT-
R is straightforward: using multiple widely used
metric scores to guide the model to learn the re-
lationship of user utterance and system response
by a multiple regression task, where the regression
targets are those metric scores. Those multiple
metric scores define how good the generation is
from different perspectives to avoid dominance by
one single score. Hence, we employ two n-gram
matching metrics: BLEU-4 and Meteor score, and
a machine learned score: BERTScore, to define
how similar system response is with respect to gold
reference; and ConveRT cosine similarity to define
how contextual system response is with respect to
user utterance.

In this work, we continually train BERT-R
with the guidance of multiple metric scores.
Define the user utterance u = (u1, ..., ul)
of length l where each ui is a token and
system response r = (r1, ..., rm) of length
m. Let D′ = {(un, rn, yτn)}N

′
n=1 be a train-

ing dataset of size N ′, where τ is a target
signal. yτ represents all metric scores: yτ =
(yτBLEU-4 , yτMeteor , yτBERTpre , yτBERTrec , yτBERTf1 , yτConveRT-cs).
Hence, the size of τ is 6, which means 6 specific
regression layers will be added to the output of
[CLS] token in BERT-R. yτ will guide BERT-R to
learn how similar system response r is with respect
to gold reference and how contextual system
response r is with respect to user utterance u
during the fine-tuning. Given the training data, the
goal of fine-tuning is to learn a multiple regression
function f : (u, r) −→ yτ that predicts different
metric scores.

Given the sentence pair (u, r), the pre-trained
BERT-R returns a sequence of contextualized vec-
tors:

v[CLS], vu1 , ..., vul , vr1 , ..., vrm = BERT-R(u, r)
(3)

where v[CLS] is the BERT-R output representation
for the special [CLS] token, which can be further
fine-tuned for classification or regression task. As
described by Devlin et al. (2019), we add separate
linear layers on top of the [CLS] vector to predict
different metric scores:

ŷτ = f(u, r) = Wτv[CLS] + bτ (4)

where Wτ and bτ are the weight matrix and bias
vector respectively. And we use the Eq. 5, the sum
of all target-specific regression loss to fine-tune
BERT-R.

lfine-tuning =
∑
τ

(
1

N ′

N ′∑
n=1

||ŷτn − yτn||2) (5)

After fine-tuning, the BERT-R is used to select the
top generation with the highest score: the sum of
all regression output of BERT-R, which is shown in
Eq. 6:

SBERT-R =
∑
τ

BERT-R(u, r) (6)

Experiment details of BERT-R: During
masked LM pre-training, batch size is 32, maximal
epoch is 10 and learning rate is 5e−5. And early
stopping is used to avoid over-fitting on the DSTC8
training dataset.

For the fine-tuning of BERT-R, we generate the
top 5 responses for MultiWOZ data with CSC-GPT
model firstly. And in order to clean the system
generated responses, we have the following proce-
dures:

1) The duplicated system responses are removed.

2) The last turn of every dialogue is removed,
where there are always “thank you” and “good
bye”, kind of non-informative sentences.

3) In order to let the network glance what the
human communication looks like, we add the
gold reference for the user utterance in the
training dataset. In addition, we need to re-
move the system responses which are same
as the gold reference beforehand, to comply
with the rule 1).

After finishing the above process, we compute the
target score respectively for the label of different re-
gression layers. During the training of the multiple
regression task, the batch size is set to 32, learning
rate 1e−5, and early stopping is used to save the
best BERT re-ranker.
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MultiWOZ 2.1 MultiWOZ 2.2

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

Variation
size

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

Variation
size

SC-LSTM (Wen et al., 2015) 28.76 49.93 58.71 1.00/1.00 - - - -
CSC-LSTM (5u5s) 29.79 51.22 59.13 1.35/2.11 - - - -

SC-GPT (Peng et al., 2020b) 28.95 50.22 91.96 2.27/6.56 28.53 49.80 91.95 2.78/6.70
CSC-GPT 29.91 51.34 92.08 2.29/6.66 29.41 51.10 92.08 2.81/6.82
BERT-R 32.37 54.01 92.40 2.22/6.34 31.68 53.65 92.39 2.81/6.82

Table 2: The results for BLEU, Meteor, BERTScore and variation size of top one generation in all models demon-
strate that our proposed contextual models in: CSC-LSTM against SC-LSTM and CSC-GPT against SC-GPT, both
outperform the corresponding baseline. Meanwhile, the proposed re-ranker BERT-R also highly improve the metric
scores compared with all other models.

5 The Experiment Results

The experimental results of all models introduced
in Section 4 are presented in this section. To ensure
a consistent performance comparison, we compute
the metric scores based on the top one generation
of all models. Table 2 shows the results of all
automatic metrics.

Furthermore, a human evaluation has been con-
ducted. We randomly sampled 100 dialogues and
their corresponding top one generations from our
proposed models as well as the baselines. We re-
cruited three annotators with relevant background
in SDS to evaluate the responses generated by dif-
ferent models. Each rater was presented the com-
plete preceding dialogue and asked to rate if “The
highlighted system response could plausibly have
been produced by a human” (natural) and if “The
highlighted system response fits well to the previ-
ous dialog” (contextual). Each metric is rated on a
5-point Likert scale, where 1 is “not agree at all”,
5 is “fully agree”. In order to guarantee the strict-
ness of human evaluation, the human judges have
no information about the origin of the utterances,
i.e., which model generated the utterance. Table 3
shows the human evaluation results.

Contextual Natural

SC-LSTM (Wen et al., 2015) 3.96 4.04
CSC-LSTM (5u5s) 4.21∗ 4.16∗

SC-GPT (Peng et al., 2020b) 4.00 4.14
CSC-GPT 4.25+ 4.27+

BERT-R 4.18 4.26

Table 3: The results of human evaluation on natural
and contextual score of all models. (∗: p-value < 0.01,
comparison with SC-LSTM baseline; +: p-value< 0.1,
comparison with SC-GPT baseline) show the superior-
ity of our proposed contextual models.

5.1 Experiment results of CSC-LSTM

The automatic metric scores comparing SC-LSTM
and CSC-LSTM in Table 2 show that CSC-LSTM
has the overall better performance in BLEU-4, Me-
teor, BERTScore and variation size compared to
the baseline. The variation size results show CSC-
LSTM can generate more variant responses per
DA, which may indicate a more contextual fitting
response, while the SC-LSTM only generate the
same utterances each time. The performance com-
parison between SC-LSTM and CSC-LSTM in Ta-
ble 2 support our initial assumption that context
helps to generate good system utterances. Espe-
cially the increase in variation size is of importance
as it indicates that the resulting utterances of CSC-
LSTM indeed be different for different contexts.

This has been validated by the human evaluation
of SC-LSTM and CSC-LSTM in Table 3. It shows
that the variation introduced by CSC-LSTM actu-
ally results in utterances that fit significantly better
to the preceding dialogue and are perceived as sig-
nificantly more natural. Overall, the performance
comparison between SC-LSTM and CSC-LSTM on
automatic metrics and human evaluation demon-
strate the dialogue history contributes to contextual
and variant responses.

The context size analysis of CSC-LSTM demon-
strate that the automatic metric scores are influ-
enced by the length of the context. All metrics
show similar curves over the different contextual
model in Figure 2. The both ends of the curves
have better performance than the inner part. The
Table 1 shows the best BLEU-4 and variation size
are both achieved for context sizes of 5u5s; while
0u0s has the best Meteor and 1u1s has the best
BERTScore. Both show that the contextual mod-
els 0u0s, 1u1s and 5u5s generally outperform the
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2u2s, 3u3s and 4u4s. Hence, the investigation of
the impact of context size for CSC-LSTM genera-
tion indicates that longer context does not linearly
result in better performance, which is further con-
firmed in the performance comparison between
CSC-GPT(0u0s) and CSC-GPT(1u1s) shown in
Table 4 in Appendix. Evidently, all contextual mod-
els achieve better performance than the baseline
(SC-LSTM in Table 2). We therefore conclude that
the immediate preceding user utterance yields the
indispensable information for contextual genera-
tion. With limited memory, using only immediate
preceding user utterance without extra context can
be regarded as a balanced option that we directly
apply for training the CSC-GPT.

5.2 Experiment results of CSC-GPT

All scores between SC-GPT and CSC-GPT in Ta-
ble 2 demonstrate that the CSC-GPT is superior
to the baseline SC-GPT for both datasets, Multi-
WOZ 2.1 and MultiWOZ 2.2. Our assumption is
again confirmed in GPT-based generation model:
dialogue history contributes to contextual and vari-
ant response, even though only one preceding user
utterance is taken into account.

When comparing the human evaluation results
of SC-GPT and CSC-GPT in Table 3, the assump-
tion is further supported: adding context to the
generation process results in more natural and con-
textual responses. The CSC-GPT generator even
achieves the best rating both in terms of natural
and contextual score compared to all other mod-
els. This means that enhancing an already powerful
pre-trained model with context is essential for its
application within dialogue systems.

5.3 Experiment results of BERT-R

Our proposed BERT-R selects the top one response
from 5 CSC-GPT generations with the highest
score in Eq. 6. The metric scores of CSC-GPT
and BERT-R in Table 2 show that the selected gen-
eration by BERT-R has a significant improvement
on BLEU-4, Meteor and BERTScore9, with a little
loss on variation size compared to the top one gener-
ation in CSC-GPT. This is in line with human evalu-
ation results where the CSC-GPT achieves slightly
better scores both in naturalness and contextualness
than BERT-R, even though BERT-R clearly shows
better results compared to the SC-GPT baseline.

9also improvement on ConveRT cosine similarity, which
is shown in the Appendix.

6 Conclusion and Future Work

In this paper, we propose two contextual generation
models: CSC-LSTM trained from scratch and CSC-
GPT adapted from pre-trained GPT-2. Both inte-
grate dialogue context information into NLG for
generating more variant and contextual response in
task-oriented dialogue systems.

In the experiment of CSC-LSTM against SC-
LSTM and CSC-GPT against SC-GPT, our pro-
posed contextual models both improve the gen-
eration performance in automatic metrics, thus
showing that CSC-LSTM and CSC-GPT are able
to capture better the contextual needs resulting in
a higher similarity to the data. This is further un-
derpinned by the number of variations. More vari-
ant responses are generated per DA in CSC-LSTM,
while the SC-LSTM only generates the same ut-
terances each time. Furthermore, the variation
size of GPT-based generators is higher than SC-
LSTM based models. The possible reason is the
pre-trained GPT-2 contributes to more diverse re-
sponses by default. The human evaluation results in
Table 3 not only demonstrate the contextual model
can generate more contextual and natural response
compared with their baseline respectively, but also
show GPT-2 contextual model CSC-GPT is supe-
rior than CSC-LSTM.

An investigation of the impact of context size
for dialogue response generation in CSC-LSTM in-
dicates that longer context does not automatically
result in better performance. However, all vari-
ant CSC-LSTM models have better performance
than baseline, which means the immediate preced-
ing user utterance contains the most contextual in-
formation for generation. This is also verified in
GPT-2 contextual generators, even only immedi-
ate preceding user utterance is taken into account,
the CSC-GPT model outperforms SC-GPT both on
automatic metrics and human evaluation.

In addition to the above mentioned two con-
textual models, we also present a re-ranker for
CSC-GPT contextual model. Adapted from pre-
trained BERT, the BERT-R continually train on
multi-domain dialogues and fine-tune on a mul-
tiple regression task to learn the relationship be-
tween user context and system response by the
metric guidance of BLEU-4, Meteor, BERTScore
and ConveRT cosine similarity. Finally, the top
one generation selected by BERT-R has significant
superiority in BLEU-4, Meteor, BERTScore and
ConveRT cosine similarity compared with top one
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generation in CSC-GPT. This means, that our pro-
posed BERT-R works from the guidance of metric
scores and can choose the generation with highest
score. However, CSC-GPT slightly outperforms
BERT-R in variation size and human evaluation.
The possible reason is that the existing automatic
metrics still have bias with human judgments (Cha-
ganty et al., 2018).

In the future, we will further explore the per-
formance of BERT-R with the guidance of other
automatic metrics, which have higher correlation
with human judgements. Furthermore, there seems
to be a link between the variation size metric and
the human evaluation scores, which will also be
part of future work.
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A Appendices

In order to better understand what our proposed
architectures look like, please find the following
Figure 3 and Figure 4. The model CSC-GPT gen-
erates contextual response with the guidance of
immediate preceding user utterance and DA. In the
CSC-LSTM, the SC-LSTM was proposed in Wen
et al. (2015) and an additional cell was introduced
into the LSTM cell to gate the DA information.
The original LSTM cell follows:

it = σ(Wwiwt +Whiht−1)

ft = σ(Wwfwt +Whfht−1)

ot = σ(Wwowt +Whoht−1)

ĉt = tanh(Wwcwt +Whcht−1)

ct = ft � ct−1 + it � ĉt
ht = ot � tanh(ct)

(7)

In SC-LSTM, the d0 starts from an one-hot vector,
at each time step the DA cell decides what infor-
mation should be retained for future time steps and
discards the others. Like:

rt = σ(Wwrwt + α(Whrht−1))

dt = rt · dt−1
(8)

Then, the value cell in Eq. 7 also depends on the
DA,

ct = ft � ct−1 + it � ĉt + tanh(Wdcdt) (9)

Finally, the hidden state is further updated by new
value cell. In our proposed CSC-LSTM, not only
DA cell is added, but the SC-LSTM cell is initial-
ized by contextual ConveRT embedding.

Given the pre-trained model can handle the
longer dialogue context for generation, so we also
trained CSC-GPT contextual model with one more
turn context besides the immediate preceding user
utterance, i.e. 1u1s. And the results comparison
between CSC-GPT (0u0s) and CSC-GPT (1u1s) is
shown in Table 4. We can know that the BLEU-4
and Meteor of CSC-GPT (0u0s) outperforms CSC-
GPT (1u1s), meanwhile, the BERTScore and vari-
ation size have no big difference. This further
demonstrate that longer context can not directly
result in better performance. The maximal length
of input in CSC-GPT (0u0s) is 120, however, CSC-
GPT (1u1s) is 190 with more GPU memory. Hence,
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ht−1

dt−1
SC-LSTM

wt

ht

dt
SC-LSTM

wt+1

ht+1

dt+1

h0 refers to Eq. 1, dialogue context is encoded by ConveRT and projected to decoder space with the Eq. 1
d0 is DA one-hot embedding, like (0, 0, ..., 1, ...) represents “hotel{ request(area=?)}”

wt is the input token at time slot t

Figure 3: The architecture of CSC-LSTM.

GPT-2

un dn rn

rn

un is the immediate preceding user utterance, like “Does it provide free parking?”
dn is the DA, like “hotel {inform (internet=yes; parking=yes)}”
rn is the gold response, like “Yes, free parking and free wifi!”

Figure 4: The architecture of CSC-GPT. The immediate preceding user utterance and MR together guide the
contextual response generation.

we recommend only immediate preceding user ut-
terance is taken into account for contextual genera-
tion in task-oriented dialogue system.

The BERT-R is trained with multiple metric
scores: BLEU-4, Meteor, BERTScore and Con-
veRT cosine similarity. In order to make consistent
comparison of all models, we don’t show the Con-
veRT cosine similarity of BERT-R in the main paper.
The Table 5 shows that all scores get improvement.

There are several use cases in Table 6. And by
system response comparison of SC-LSTM agaist
CSC-LSTM and SC-GPT agaist CSC-GPT given
preceding dialogue context, the Table 6 shows the
importance of dialogue context for natural and con-
textual response.
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MultiWOZ 2.1 MultiWOZ 2.2

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

Variation
size

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

Variation
size

CSC-GPT (0u0s) 29.91 51.34 92.08 2.29/6.66 29.41 51.10 92.08 2.81/6.82
CSC-GPT (1u1s) 29.70 51.02 92.08 2.29/6.67 28.80 50.32 91.94 2.81/6.81

Table 4: The results for BLEU, Meteor, BERTScore and Variation size of top one CSC-GPT (0u0s) generation and
CSC-GPT (1u1s) show that CSC-GPT (0u0s) outperforms CSC-GPT (1u1s) and support the context size analysis
of CSC-LSTM: the longer context in contextual model can not linearly result in better performance.

MultiWOZ 2.1 MultiWOZ 2.2

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

ConveRT
cs

BLEU-4
(%)

Meteor
(%)

BERTScore
F1 (%)

ConveRT
cs

CSC-GPT 29.91 51.34 92.08 33.41 29.41 51.10 92.08 33.81
BERT-R 32.37 54.01 92.40 34.70 31.68 53.65 92.39 35.00

Table 5: The results for BLEU, Meteor, BERTScore and ConveRT cosine similarity of top one CSC-GPT gen-
eration and the selected one by BERT-R demonstrate that all target metrics used in BERT-R have a significant
improvement through re-ranking.
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context
User: Hi, I’m looking for a hotel called aylesbray lodge guest house. Do you
have anything with that name?

system response

SC-LSTM: It is a moderately priced hotel in the south. Would you like me
to book it for you?
CSC-LSTM: Yes, it is a hotel in the south in the moderately priced price range.
Would you like to book a room?
SC-GPT: It is a moderately priced hotel in the south area. Would you like me
to book it for you?
CSC-GPT: I do, it is a moderately priced hotel in the south. Would you like
to make a booking?

context

User: I’m looking for a nightclub to go to. Are there any in the centre of town?
System: There are 5 nightclubs in the centre. Ballare is one of them. Would that
work for you?
User: Is there an entrance fee for Ballare?

system response

SC-LSTM: The entrance fee is 5 pounds.
CSC-LSTM Yes, it is 5 pounds .
SC-GPT: The entrance fee is 5 pounds.
CSC-GPT: Yes, it is 5 pounds to get in.

context User: Hi, I am trying to plan my trip and could use some help with a particular restaurant.

system response

SC-LSTM: Do you have a preference for area or price range?
CSC-LSTM: Do you have a certain area or price range in mind?
SC-GPT: Sure, what kind of food are you looking for and what area and price range?
CSC-GPT: I would love to assist you! What type of food are you looking for and
what price range?

context

User: Can you also help me find a train to Bishops Stortford?
System: There are more than 70 trains to Bishops Stratford. Could you tell me
what day you would like to leave, where you would like to leave from, and the times?
User: I am leaving Cambridge on Sunday, can you please tell me the travel time on that ride?
System: Sure, it is a 38 minute trip. Would you like a ticket?
User: I need to leave after 14:45 also.

system response

SC-LSTM: The tr3600 leaves Cambridge at 15:29.
CSC-LSTM: Tr3600 leaves Cambridge at 15:29. Would that works for you?
SC-GPT: Tr3600 leaves Cambridge at 15:29.
CSC-GPT: How about tr3600? It leaves Cambridge at 15:29.

Table 6: System response of different models given preceding dialogue context show that the contextual models:
CSC-LSTM and CSC-GPT, can generate more natural responses that fit better to dialogue history.


