@inproceedings{singh-etal-2021-transferability,
title = "On the Transferability of Massively Multilingual Pretrained Models in the Pretext of the {I}ndo-{A}ryan and Tibeto-Burman Languages",
author = "Singh, Salam Michael and
Sanayai Meetei, Loitongbam and
Singh, Alok and
Singh, Thoudam Doren and
Bandyopadhyay, Sivaji",
editor = "Bandyopadhyay, Sivaji and
Devi, Sobha Lalitha and
Bhattacharyya, Pushpak",
booktitle = "Proceedings of the 18th International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2021",
address = "National Institute of Technology Silchar, Silchar, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2021.icon-main.9/",
pages = "64--74",
abstract = "In recent times, machine translation models can learn to perform implicit bridging between language pairs never seen explicitly during training and showing that transfer learning helps for languages with constrained resources. This work investigates the low resource machine translation via transfer learning from multilingual pre-trained models i.e. mBART-50 and mT5-base in the pretext of Indo-Aryan (Assamese and Bengali) and Tibeto-Burman (Manipuri) languages via finetuning as a downstream task. Assamese and Manipuri were absent in the pretraining of both mBART-50 and the mT5 models. However, the experimental results attest that the finetuning from these pre-trained models surpasses the multilingual model trained from scratch."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singh-etal-2021-transferability">
<titleInfo>
<title>On the Transferability of Massively Multilingual Pretrained Models in the Pretext of the Indo-Aryan and Tibeto-Burman Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="given">Michael</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loitongbam</namePart>
<namePart type="family">Sanayai Meetei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alok</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thoudam</namePart>
<namePart type="given">Doren</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sivaji</namePart>
<namePart type="family">Bandyopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sivaji</namePart>
<namePart type="family">Bandyopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="given">Lalitha</namePart>
<namePart type="family">Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">National Institute of Technology Silchar, Silchar, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent times, machine translation models can learn to perform implicit bridging between language pairs never seen explicitly during training and showing that transfer learning helps for languages with constrained resources. This work investigates the low resource machine translation via transfer learning from multilingual pre-trained models i.e. mBART-50 and mT5-base in the pretext of Indo-Aryan (Assamese and Bengali) and Tibeto-Burman (Manipuri) languages via finetuning as a downstream task. Assamese and Manipuri were absent in the pretraining of both mBART-50 and the mT5 models. However, the experimental results attest that the finetuning from these pre-trained models surpasses the multilingual model trained from scratch.</abstract>
<identifier type="citekey">singh-etal-2021-transferability</identifier>
<location>
<url>https://aclanthology.org/2021.icon-main.9/</url>
</location>
<part>
<date>2021-12</date>
<extent unit="page">
<start>64</start>
<end>74</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Transferability of Massively Multilingual Pretrained Models in the Pretext of the Indo-Aryan and Tibeto-Burman Languages
%A Singh, Salam Michael
%A Sanayai Meetei, Loitongbam
%A Singh, Alok
%A Singh, Thoudam Doren
%A Bandyopadhyay, Sivaji
%Y Bandyopadhyay, Sivaji
%Y Devi, Sobha Lalitha
%Y Bhattacharyya, Pushpak
%S Proceedings of the 18th International Conference on Natural Language Processing (ICON)
%D 2021
%8 December
%I NLP Association of India (NLPAI)
%C National Institute of Technology Silchar, Silchar, India
%F singh-etal-2021-transferability
%X In recent times, machine translation models can learn to perform implicit bridging between language pairs never seen explicitly during training and showing that transfer learning helps for languages with constrained resources. This work investigates the low resource machine translation via transfer learning from multilingual pre-trained models i.e. mBART-50 and mT5-base in the pretext of Indo-Aryan (Assamese and Bengali) and Tibeto-Burman (Manipuri) languages via finetuning as a downstream task. Assamese and Manipuri were absent in the pretraining of both mBART-50 and the mT5 models. However, the experimental results attest that the finetuning from these pre-trained models surpasses the multilingual model trained from scratch.
%U https://aclanthology.org/2021.icon-main.9/
%P 64-74
Markdown (Informal)
[On the Transferability of Massively Multilingual Pretrained Models in the Pretext of the Indo-Aryan and Tibeto-Burman Languages](https://aclanthology.org/2021.icon-main.9/) (Singh et al., ICON 2021)
ACL